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Abstract

We introduce a new dataset for Question
Rewriting in Conversational Context
(QReCC), which contains 14K conversations
with 81K question-answer pairs. The task in
QReCC is to find answers to conversational
questions within a collection of 10M web
pages (split into 54M passages). Answers
to questions in the same conversation may
be distributed across several web pages.
QReCC provides annotations that allow us
to train and evaluate individual subtasks of
question rewriting, passage retrieval and
reading comprehension required for the
end-to-end conversational question answering
(QA) task. We report the effectiveness of a
strong baseline approach that combines the
state-of-the-art model for question rewriting,
and competitive models for open-domain
QA. Our results set the first baseline for the
QReCC dataset with F1 of 19.07, compared to
the human upper bound of 74.47, indicating
the difficulty of the setup and a large room for
improvement.

1 Introduction

It is often not possible to address a complex infor-
mation need with a single question. Consequently,
there is a clear need to extend open-domain ques-
tion answering (QA) to a conversational setting.
This task is commonly referred to as conversational
(interactive or sequential) QA (Webb, 2006; Saeidi
et al., 2018; Reddy et al., 2019). Conversational
QA requests an answer conditioned on both the
question and the previous conversation turns as
context. Previously proposed large-scale bench-
marks for conversational QA, such as QuAC and
CoQA, limit the topic of conversation to the content

⭑ Equal contribution.
♥ Work done as an intern at Apple Inc.

Figure 1: A snippet of a sample conversation from
QReCC with question rewrites and answer provenance
links. Orange indicates coreference cases where
the highlighted token should be replaced with its an-
tecedent (in bold). Blue indicates the tokens that
should be generated to make the question unambiguous
outside of the conversational context.

of a single document. In practice, however, the an-
swers can be distributed across several documents
that are relevant to the conversation, or the topic of
the conversation may also drift. To investigate this
phenomena and develop approaches suitable for
the complexities of this task, we introduce a new
dataset for open-domain conversational QA, called
QReCC.1 The dataset consists of 13.7K conversa-
tions with an average of 6 turns per conversation.

A conversation in QReCC consists of a sequence
of question-answer pairs. The answers to questions
were produced by human annotators, who looked
up relevant information on the web using a search
engine. QReCC is therefore the first large-scale
dataset for conversational QA that incorporates an
information retrieval subtask. QReCC is accompa-
nied with a script for downloading a collection of
web pages from Common Crawl and the Wayback
Machine, and also for segmenting the pages into

1https://github.com/apple/ml-qrecc
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passages for passage retrieval.
QReCC is inspired by the task of question rewrit-

ing (QR) that allows us to reduce the task of
conversational QA to non-conversational QA by
generating self-contained versions of contextually-
dependent questions. QR was recently shown cru-
cial for porting retrieval QA architectures to a con-
versational setting (Dalton et al., 2019). Follow-up
questions in conversational QA often depend on the
previous conversation turns due to ellipsis (miss-
ing content) and coreference (anaphora). Every
question-answer pair in QReCC is also annotated
with a question rewrite. We evaluate the quality of
these rewrites as self-contained questions in terms
of the ability of the rewritten question, when used
as input to the web search engine, to retrieve the
correct answer. A snippet of a sample QReCC
conversation is given in Figure 1.

The dataset collection included two phases:
(1) dialogue collection, and (2) document collec-
tion. First, we set up an annotation task to col-
lect dialogues with question-answer pairs along
with question rewrites and answer provenance links.
Second, after all dialogues were collected we down-
loaded the web pages using the provenance links,
and then extended this set with a random sample
of other web pages from Common Crawl, prepro-
cessed and split the pages into passages.

To produce the first baseline, we augment an
open-domain QA model with a QR component that
allows us to extend it to a conversational scenario.
We evaluate this approach on the QReCC dataset,
reporting the end-to-end effectiveness as well as the
effectiveness on the individual subtasks separately.

Our contributions. We collected the first large-
scale dataset for end-to-end, open-domain conver-
sational QA that contains question rewrites that
incorporate conversational context. We present a
systematic comparison of existing automatic evalu-
ation metrics on assessing the quality of question
rewrites and show the metrics that best correlate
with human judgement. We show empirically that
QR provides a unified and effective solution for
resolving references — both co-reference and ellip-
sis — in multi-turn dialogue setting and positively
impacts the conversational QA task. We evalu-
ate the dataset using a baseline that incorporates
the state-of-the-art model in QR and competitive
models for passage retrieval and answer extraction.
This dataset provides a resource for the commu-
nity to develop, evaluate, and advance methods for

end-to-end, open-domain conversational QA.

2 Related Work

QReCC builds upon three publicly available
datasets and further extends them to the open-
domain conversational QA setting: Question
Answering in Context (QuAC) (Choi et al.,
2018), TREC Conversational Assistant Track
(CAsT) (Dalton et al., 2019) and Natural Questions
(NQ) (Kwiatkowski et al., 2019). QReCC is the
first large-scale dataset that supports the tasks of
QR, passage retrieval, and reading comprehension
(see Table 1 for the dataset comparison).

Open-domain QA. Reading comprehension
(RC) approaches were recently extended to incor-
porate a retrieval subtask (Chen et al., 2017; Yang
et al., 2019; Lee et al., 2019). This task is also
referred to as machine reading at scale (Chen et al.,
2017) or end-to-end QA (Yang et al., 2019). In this
setup a reading comprehension component is pre-
ceded by a document retrieval component. The an-
swer spans are extracted from documents retrieved
from a document collection, given as input. The
standard approach to end-to-end open-domain QA
is (1) use an efficient filtering approach to reduce
the number of candidate passages to the top-k of
the most relevant ones (usually BM25 based on the
bag-of-words representation); and then (2) re-rank
the subset of the top-k relevant passages using a
more fine-grained approach, such as BERT based
on vector representations (Yang et al., 2019). An
alternative approach, to pretrain a retrieval compo-
nent that operates on vector representations, was
shown to be computationally expensive as it re-
quires training on multiple TPUs for hundreds thou-
sands iterations (Lee et al., 2019; Guu et al., 2020).

Conversational QA. Independently from the
end-to-end open-domain QA extension, the RC
task was extended to a conversational setting, in
which answer extraction is conditioned not only
on the input question but also on the previous con-
versation turns (Choi et al., 2018; Reddy et al.,
2019). The first attempt at extending the task of in-
formation retrieval (IR) to a conversational setting
was the recent TREC CAsT 2019 shared task (Dal-
ton et al., 2019). The challenge was to rank pas-
sages from a passage collection by their relevance
to an input question in the context of a conversa-
tion history. The size of the passage collection
in TREC CAsT 2019 was 38.4M passages, which



Table 1: The datasets that QReCC extends to open-domain conversational QA (QuAC, CAsT and NQ) and the
datasets that are complementary to QReCC (CANARD and SaaC). RC - Reading Comprehension, PR - Passage
Retrieval, QR - Question Rewriting.

Dataset #Dialogues #Questions Task Provenance
QuAC (Choi et al., 2018) 13.6K 98K RC -
NQ (Kwiatkowski et al., 2019) 0 307K RC -
CAsT (Dalton et al., 2019) 80 748 PR -
CANARD (Elgohary et al., 2019) 5.6K 40.5K QR QuAC
SaaC (Ren et al., 2020) 80 748 QR+PR+RC CAsT
QReCC (our work) 13.7K 81K QR+PR+RC QuAC+NQ+CAsT

requires efficient IR approaches in place. As effi-
cient retrieval approaches operate on bag-of-words
representations they need a different way to han-
dle conversational context since they can not be
trained end-to-end using a latent representation of
the conversational context. A solution to this com-
putational bottleneck was a QR model that learns
to sample tokens from the conversational context
as a pre-processing step before QA.

Question Rewriting. All supervised QR models
were trained on the CANARD dataset (Elgohary
et al., 2019). CANARD provides rewrites for the
conversational questions from the QuAC dataset.
QR effectively modifies all follow-up questions
such that they can be correctly interpreted outside
of the conversational context as well. This exten-
sion to the conversational QA task proved espe-
cially useful while allowing retrieval models to in-
corporate conversational context (Voskarides et al.,
2020; Vakulenko et al., 2020; Lin et al., 2020).

TREC CAsT 2019 paved the way to conversa-
tional QA for retrieval but had several important
limitations: (1) no training data and (2) no answer
spans. First, the size of the CAsT dataset is lim-
ited to 80 dialogues, which is nowhere enough for
training a machine-learning model. This was also
the reason why CANARD played such an impor-
tant role for the development of retrieval-based
approaches even though it was collected as a RC
dataset. Second, the task in TREC CAsT 2019 was
conversational passage retrieval not extractive QA
since the expected output was ranked passages and
not a text span. We designed QReCC to overcome
both of these limitations.

The size of the QReCC dataset is comparable
with other large-scale conversational QA datasets
(see Table 1). The most relevant to our work is
the concurrent work by Ren et al., who extended
the TREC CAsT dataset with crowd-sourced an-
swer spans. Since the size of this dataset is inad-

equate for training a machine-learning model and
can be used only for evaluation, the authors train
their models on the MS MARCO dataset instead,
which is a non-conversational QA dataset (Bajaj
et al., 2016). Their evaluation results show how the
performance degrades due to the lack of conver-
sational training data. TREC CAsT will continue
in 2020 and the QReCC dataset provides a valu-
able benchmark helping to train and evaluate novel
conversational QA approaches.

3 Dialogue Collection

To simplify the data collection task we decided
to use questions from pre-existing QA datasets
as seeds for dialogues in QReCC. We used ques-
tions from QuAC, CAsT and NQ. While QuAC
and CAsT datasets contain question sequences, NQ
is not a conversational dataset but contains stand-
alone questions from web search. We use the NQ
dataset to increase and diversify the number of
samples beyond QuAC and CAsT by oversampling
the rare types of question rewrites. The majority
of the follow-up questions in QuAC require coref-
erence resolution for QR. Therefore, we explic-
itly instructed the annotators to use NQ as a start
of a conversation and then come up with relevant
follow-up questions, which would require genera-
tion of missing content - i.e. ellipsis - instead of
coreference resolution for QR.

The task for the annotators was also to answer
questions using a web search engine. Question
rewrites were used as input to a search engine. This
setup helps to obtain feedback on the quality of QR
with respect to the effectiveness of answer retrieval
(see Section 6 for more details on using web search
results for the evaluation of the QR performance).
Finally, the question-answer pair is annotated with
the link to the web page that was used to produce
the answer.

A team of 30 professional annotators with a



Figure 2: The 10 most frequently replaced tokens in
QReCC.

Table 2: Summary statistics for the QReCC dataset.

QReCC Train Dev. Test All

# questions (Qs) 51.4K 12.9K 16.7K 81K
# dialogues 8.7K 2.2K 2.8K 13.7K
max Qs/dialogue 12 12 12 12
avg Qs/dialogue 6 6 6 6
min Qs/dialogue 5 5 5 5

% replacement 53 52 53 52
% insertion 35 36 37 38
% copy 11 11 9 9
% removal 1 1 1 1

project lead were employed to perform the task.
The annotation task was described in the guide-
lines (see Appendix B for more details). To ensure
the quality of the annotations we followed a post-
hoc evaluation procedure, in which 5 reviewers go
through the dataset and update incorrect examples
they identify with consensus.

4 Dialogue Analysis

QReCC contains 13,733 dialogues with 81,018
question-answer pairs in total. 9.3K dialogues are
based on the questions from QuAC; 80 are from
TREC CAsT; and 4.4K are from NQ. 9% of ques-
tions in QReCC do not have answers. We still
retained the question rewrites even if no answer
was found on the web. 131 questions were anno-
tated with links to web pages without answer texts,
e.g. “Show me videos of Bharatanatyam dance.”

We prepared three standard dataset splits and
ensured that they are balanced in terms of the stan-
dard dialogue statistics and the types of QR (see
Table 2). We distinguish four types of QR. They
differ with respect to the intervention required to
resolve contextual dependencies in dialogue. These
types can be automatically identified by measuring
the difference between an original question and a

question rewrite:

Insertion – new tokens are added to the
original question to produce the rewrite.
Removal – some tokens are removed.
Replacement – some tokens are added
and some are removed.
Copy – no modification is needed.

The majority of questions in QReCC (52%) re-
quire Replacement. Figure 2 shows the tokens that
are most frequently replaced in QR. All of them
are pronouns that require anaphora resolution. By
specifically targeting more rare types of question
rewriting in our data collection task we managed
to increase the proportion of the Insertion cases in
our dataset. This allows us to train and evaluate
the ability of the model to reconstruct missing con-
text, which cannot be achieved using traditional
co-reference resolution approaches.

5 Document Collection

We download the web pages using the answer
provenance links provided by the annotators from
the Internet Archive Wayback Machine.2 Then,
we complement the relevant pages with randomly
sampled web pages that constitute 1% of the Com-
mon Crawl dataset identified as English pages.3

The final collection consists of approximately 14K
pages from the Wayback Machine and 9.9M ran-
dom web pages from the Common Crawl dataset.
The scripts for reproducing the document collec-
tion will be provided alongside the dataset. See
Appendix A.2 for more details.

After downloading the pages we extract the tex-
tual content from the HTML and split texts into
passages (max 220 tokens per passage). After seg-
mentation, we have a total of 54M passages which
we index using Anserini (Yang et al., 2017).

We search the passage collection using the hu-
man annotated answers to augment the dataset with
alternative sources of correct answers. For each
document returned, we identify the span in the doc-
ument that has the highest token overlap (F1) with
the human answer. There are a total of 88,488 pas-
sages with F1 = 1.0 using our methodology, and
126,079 passages with a F1 ≥ 0.8. We consider the
documents with F1 ≥ 0.8 as relevant. On average,
there are 1.6 relevant passages per question.

2We use the version of a web page, which is the closest to
the end date of the dialogue collection (November 24, 2019).

3https://commoncrawl.org/2019/11/
november-2019-crawl-archive-now-available/

https://commoncrawl.org/2019/11/november-2019-crawl-archive-now-available/
https://commoncrawl.org/2019/11/november-2019-crawl-archive-now-available/


Table 3: Comparison of different evaluation metrics in terms of Pearson correlation with the human judgment of
the question rewriting quality.

Metrics Pearson Metrics Pearson

Exact Match 0.56 ROUGE-1 P 0.51
Embeddings USE 0.67 ROUGE-1 R 0.63

InferSent 0.48 ROUGE-1 F 0.61
Search
Results

R@1 0.66 ROUGE-2 P 0.54
R@2 0.72 ROUGE-2 R 0.57
R@3 0.73 ROUGE-2 F 0.57
R@4 0.74 ROUGE-L P 0.50
R@5 0.77 ROUGE-L R 0.61
R@10 0.80 ROUGE-L F 0.58
AR 0.79 METEOR 0.59
NDCG 0.74 BLEU 0.58

6 Question Rewriting Metrics Validation

BLEU has typically been used in previous work for
measuring the quality of QR (Elgohary et al., 2019;
Lin et al., 2020). We conduct a systematic evalu-
ation and compare BLEU with alternative evalua-
tion metrics, previously applied in summarization
and machine translation, to ensure the most reli-
able metrics we can obtain for the model selection.
Our evaluation shows that BLEU does not com-
pare favourably with other metrics in evaluating
the quality of QR.

Task. We took a random sample of 10K ques-
tions and used a sequence-to-sequence model (Nal-
lapati et al., 2016) trained on the QReCC dataset
to generate question rewrites. These generated
rewrites were compared to the ground truth rewrites
produced by human annotators. Different annota-
tors graded each model-generated rewrite with a
binary label: 0 (incorrect rewrite) or 1 (correct
rewrite). For a question rewrite to be correct it does
not have to exactly match the ground truth rewrite,
but it should correctly capture the conversational
context and be a self-contained question. For ex-
ample, the model-generated rewrite “What are the
global warming dangers?” is a correct rewrite with
the ground truth rewrite being “What are the dan-
gers of global warming?”. In addition, we also
assess the variance of the human assessments. The
Pearson correlation between any two annotators on
average is 0.94. We observed the mean and the
variance to be 0.083 and 0.076 respectively. Per-
forming a two-tail statistical significance test shows
the P-value to be 0.0201.

We use several automated metrics to compare

the rewrites with the ground truth and compute
their Pearson correlation with the human judge-
ments (see Table 3 for results).

Exact Match is a binary variable that indicates
the token set overlap applied after the standard pre-
processing: lower-casing, stemming, punctuation
and stopword removal.

ROUGE (Lin, 2004) reflects similarity between
two texts in terms of n-gram overlap (R-1 for
unigrams; R-2 for bigrams and R-L for the
longest common n-gram). We report the mean for
precision (P), recall (R) and F-measure (F).

METEOR (Denkowski and Lavie, 2014) is a
machine translation metric based on exact, stem,
synonym, and paraphrase matches between words
and phrases.

BLEU (Papineni et al., 2002) is a text similarity
metric that uses a modified form of precision and
n-grams from candidate and reference texts.

Embeddings group several unsupervised
approaches that produce a sentence-level vector
representation: Universal Sentence Encoder (Cer
et al., 2018) and InferSent (Conneau et al., 2017).

Search Results – we use both question
rewrites in Google Search and compare the
overlap between the produced page ranks in
terms of the standard IR metrics: Recall@k
for the top-k links, Average Recall (AR) and



Table 4: Evaluation results of QR models (mean with 95% confidence intervals). *Human QR metrics are com-
puted across 5 different random samples of 1000 question rewrites from the intersection of QReCC and CANARD
conversations.

Model/Metrics ROUGE-1 R USE R@10

AllenAI Coref (Lee et al., 2018) 67.1% ± 10E-4% 82.3% ± 10E-3% 56.1% ± 10E-4%
Generator (Radford et al., 2019) 73.4% ± 0.6% 86.2% ± 0.9% 69.1% ± 0.2%
Generator + Multiple-choice (Wolf et al., 2019b) 74.1% ± 0.5% 86.3% ± 0.4% 70.2% ± 0.1%
PointerGenerator (Elgohary et al., 2019) 80.2% ± 0.8% 89.1% ± 1.1% 75.3% ± 0.3%
GECOR (Quan et al., 2019) 84.1% ± 0.3% 91.8% ± 0.2% 78.1% ± 0.2%
CopyTransformer (Gehrmann et al., 2018) 86.1% ± 0.5% 92.8% ± 0.3% 79.4% ± 0.3%
Transformer++ 89.5% ± 0.4% 95.2% ± 0.2% 83.2% ± 0.3%

Human* 94.6% ± 0.2% 97.3% ± 0.1% 87.2% ± 0.1%

Normalized Discounted Cumulative Gain (NDCG).

The best performing metric in our experiments
(i.e., closest to the human judgement) is the set
overlap of the web search results (R@10). The best
metrics independent of QA are Universal Sentence
Embedding (USE) and unigram recall (ROUGE-1
R). We provide more details of the metrics perfor-
mance illustrated with examples and the discussion
in Appendix C. We use the set of all three best eval-
uation metrics to select the optimal QR model for
our baseline approach.

7 Baseline Approach

We extend BERTserini (Yang et al., 2019), an ef-
ficient approach to open-domain QA, with a QR
model to incorporate conversational context. This
approach consists of three stages: (1) QR, (2) PR
and (3) RC. In the first stage, QR, a model is
trained to generate a stand-alone question given
a follow-up question and the preceding question-
answer pairs. In the second stage, PR, the top-k
relevant passages are retrieved from the index us-
ing BM25 using the rewritten question. In the third
stage, RC, a model is trained to extract an answer
span from a passage or predict if the passage is ir-
relevant. The scores obtained from PR and RC are
then combined as a weighted sum to produce the
final score. The span associated with the passage
with the highest score is chosen as the final answer.

7.1 Question Rewriting

We evaluate a co-reference model and several
generative models on the QR subtask using the
question rewrites in QReCC and the set of QR
metrics selected in Section 6. The best performing
model is then used in a combination with BERT-
serini to set the baseline results for the end-to-end

QA task in QReCC. All our Transformer-based
models were initialized with the pretrained weights
of GPT2 (English medium-size) (Radford et al.,
2019) and further fine-tuned on question rewrites
from the QReCC training set (see Appendix A.1
for more details on training the model and the
choice of the hyperparameters).

AllenAI Coref is the state-of-the-art model for
coreference resolution task (Lee et al., 2018). We
adapt it for QR with a heuristic that substitutes
all coreference mentions with the corresponding
antecedents from the cluster.

PointerGenerator uses a bi-LSTM encoder
and a pointer-generator decoder, which allows
to copy and generate tokens (Elgohary et al., 2019).

GECOR uses two bi-GRU encoders, one for
user utterance and other for dialogue context, and
a pointer-generator decoder previously proposed
for task-oriented dialogues (Quan et al., 2019).

Generator is a Transformer decoder model
with a language modeling head (linear layer in the
size of the vocabulary) (Radford et al., 2019).

Generator + Multiple-choice model has a
second head for the auxiliary classification task
that distinguishes between the correct rewrite
and several noisy rewrites as negative samples
(inspired by TransferTransfo (Wolf et al., 2019b)).

CopyTransformer uses one of the attention
heads of the Transformer as a pointer to copy
tokens from the input sequence directly (Gehrmann
et al., 2018).



Figure 3: Rouge-1R, USE and R@10 metrics of baseline co-reference model, top-3 encoder-decoder models, and
Transformer++ model based on dialogue turn number

Transformer++ model has two language mod-
eling heads that produce separate vocabulary distri-
butions, which are then combined via a parameter-
ized weighted sum (the coefficients are produced
by combining the output of the first attention head
and the input embeddings).

7.2 BERTserini
We implemented BERTserini following Yang et al.
(2019) We use the standard BM25 ranking for pas-
sage retrieval with k1 = 0.82, b = 0.68, which was
previously found to work well for passage retrieval
on MS MARCO. We then retrieve the top-100 rel-
evant passages per question. Afterwards, we use
BERT-Large fine-tuned for the task of reading com-
prehension. This model takes a question and each
of the relevant passages as input and produces the
answer span (Wolf et al., 2019a). BERT-Large pro-
duces a score (SBERT), which is combined with the
retrieval score for each of the passages (SAnserini)
through simple linear interpolation:

S = (1 − µ) ⋅ SAnserini + µ ⋅ SBERT

We pick the span with the highest score S as the
answer. The parameter µ ∈ [0, 1] was tuned using
a 10% random subset of the QReCC training set
withheld from the BERT-Large training (we found
µ = 0.7 to work best).

BERT-Large was trained on human rewrites
from the QReCC training set, and evaluated on
the test set using either the original questions, hu-
man rewrites or the rewrites produced by the best
QR model, Transformer++. The model is trained
to either predict an answer span or predict that the
passage does not contain an answer. “No answer”
for the question is predicted only when neither of
the relevant passages predicts an answer span. The

model was trained on 480K paragraphs that con-
tain the correct answers and 5K of other paragraphs
as negative samples (see Appendix A.3 for more
details on training the model and the choice of the
hyperparameters).

8 Baseline Results

We use the results of QR to select the best model
and then use it for the end-to-end QA task. Ques-
tion rewrites are used as input for both passage
retrieval and reading comprehension tasks. The
performance of the QR component is compared
with the end-to-end model conditioned on the con-
versational context.

8.1 Question Rewriting Effectiveness

We analyze the effectiveness of our QR models by
doing a 5-fold cross validation and obtaining the
best performing metrics. Figure 3 contains 3 plots
showing ROUGE 1-R, USE and R@10 across 5
turns. We start with the 2

nd turn because the 1
st

turn always is a self-contained query. The metrics
across turns also stay stable with the same result
for all the models. The Transformer++ model is
stable with little variance in terms of its maximum
and minimum metric values across all the best per-
forming metrics.

Our evaluation results are summarized in Table 4.
All generative models outperform the state-of-the-
art coreference resolution model (AllenAI Coref
model in Table 4). We noticed that PointerGenera-
tor which employs a bi-LSTM encoder with a copy
and generate mechanism outperforms Generator us-
ing Transformer alone. We could not find evidence
that pretraining with an auxiliary regression task
can improve the QR model effectiveness (Gener-
ator+ Multiple-choice model in Table 4). Use of



Table 5: Mean reciprocal rank, recall@10, and re-
call@100 for passage retrieval on test set questions.

Rewrite Type MRR R@10 R@100

Original 0.0271 3.68 8.15
Transformer++ 0.0363 14.30 26.76
Human 0.0400 17.41 31.36

Table 6: Mean F1 and Exact Match scores (%) on pas-
sages for extractive QA. “Known Context” assumes
perfect retrieval. The “Extractive Upper Bound” as-
sumes perfect retrieval and single document span ex-
traction.

Setting Rewrite Type F1 EM

End-to-End Original 11.78 0.49
Transformer++ 19.07 0.94
Human 21.81 1.19

Known Context Original 17.24 1.90
Transformer++ 32.34 4.04
Human 36.42 4.70

Extractive Upper Bound 74.47 24.42

two separate bi-GRU encoders for the query and
conversation context further improved the QR ef-
fectiveness (GECOR). Modeling both copying and
generating the tokens from the input sequence em-
ploying the Transformer helped improve the effec-
tiveness of the QR model (CopyTransformer model
in Table 4) compared to other existing generative
models. Finally, obtaining the final distribution
by computing token probabilities and weighting
question and context vocabulary distributions with
those probabilities helped improve over the best
performing generative model (Transformer++ in
Table 4).

8.2 Question Answering Effectiveness

Table 5 shows the mean reciprocal rank (MRR),
R@10, and R@100 of using the original, Trans-
former++, and human rewritten questions. R@k
is averaged across all questions. For a question,
if R@k is 1.0, it means that there is a passage in
the top-k at any rank such that the passage is rele-
vant; and 0.0 otherwise. Table 6 shows the standard
F1 and Exact Match metrics for extractive QA for
each type of input question. In the “End-to-End”
setting, the retrieval score was combined with the
BERT reader score to determine the final span. In
the “Known Context” setting, we use the relevant
passage from the web page indicated by the human
annotator, i.e., without passage retrieval. In the

“Extractive Upper Bound” setting, we use a heuris-
tic to find the answer span with the highest F1 score
among the top-100 retrieved passages. The later
setup indicates the best performance the reader can
achieve given the retrieval results.

The upper bound on the answer span extraction
performance (F1=74.47%) highlights the need for
more sophisticated QA techniques than the stan-
dard reading comprehension approaches can offer
now. Some answer texts in QReCC were para-
phrased or summarised using multiple passages
from the same web page. Abstractive approaches
to answer generation are necessary to close this
performance gap. Research in this area is still in its
infancy and we hope that the QReCC dataset will
help to stimulate more work in this area.

Even using single document, span extraction
techniques, there is a large room for improvement.
Comparing “Known Context” to “End-to-End” we
see errors introduced by the retrieval step, and com-
paring the “Extractive Upper Bound” to “Known
Context” we see the sizeable margin of improve-
ment available even for extractive models. Empiri-
cally, this shows that even with competitive base-
lines the retrieval, extractive and full QA tasks are
all far from solved.

In both Table 5 and Table 6 we see that Human
rewritten questions double the performance of orig-
inal questions. In the absence of human rewritten
questions at inference time, using Transfomer++
elevates the effectiveness of the QA task, nearly
matching that proffered by human-level question
rewriting.

9 Conclusion

We introduced the QReCC dataset for open-domain
conversational QA. QReCC is the first dataset to
cover all the subtasks relevant for conversational
QA, which include question rewriting, passage re-
trieval and reading comprehension. We also set
the first end-to-end baseline results for QReCC by
evaluating an open-domain QA model in combina-
tion with a QR model. We presented a systematic
comparison of existing automatic evaluation met-
rics on assessing the quality of question rewrites
and show the metrics that best proxy human judge-
ment. Our empirical evaluation shows that QR
provides an effective solution for resolving both
ellipsis and co-reference that allows to use existing
non-conversational QA models in a conversational
dialogue setting. Our competitive, end-to-end base-



lines achieve an F1 score of 19.07%, well beneath
the 74.47% of the upper bound for extractive QA.
This suggests not only that there is a room for im-
provement in extractive conversational QA, but that
more sophisticated abstractive techniques are re-
quired to successfully solve QReCC.
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A Reproducibility

A.1 Training Transformer++ for Question
Rewriting

Details about training setup of Transformer++ for
question rewriting task is provided in Table 7. The
Transformer head is initialized with the pretrained
weights of GPT-2 (medium) and further fine-tuned
on the QReCC train set. We use PyTorch imple-
mentation from HuggingFace.4 Transformer++ is
trained using model parallelism on 5 Tesla V100
GPUs with hyperparameter search trial.

A.2 Building Document Collection
Here we provide further details for building the
document collection. If the web page of the prove-
nance link containing the answer was not archived
by the Wayback Machine yet, we trigger the archiv-
ing through the Wayback Machine API whenever
possible. Overall, 2% of the annotated web pages
could not be archived by the Wayback Machine due
to the restricted access (such as the Quora website).

For the Common Crawl data, we take the index
files from November 2019 and filter URLs to only
those that are retrieved with HTTP status code 200
and those that are identified as English. We extract
the pages from the Common Crawl WET files that
correspond to these filtered URLs, and sample the
first link out of every 100 links in each filtered
WET file. We use GNU Parallel to perform parallel
processing on WET files for creating our dataset
(Tange, 2018).

Overall, we find that 14,154 out of 14,480
(97.75%) unique webpages found by human an-
notators to contain answer and has an associated
archived copy on the Wayback Machine. The final
collection consists of these pages from the Way-
back Machine and 9,872,557 random web pages
from the Common Crawl.

After downloading the pages we extract all text
from the page using the Beautiful Soup library.5

We iterate through the web page by newlines, and
accumulate the tokens for every line. Whenever
the number of tokens reaches 220 or more, we emit
a paragraph, and reset the token counter to 0. Note
the last paragraph on the page may have fewer
than 220 tokens. After segmentation, we have a
total of 53,826,893 passages which we index using

4https://github.com/huggingface/
transformers

5https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

Anserini v0.8.1. Hence we treat each passage as a
single document.

A.3 Training BERT-L for Reading
Comprehension

Below we provide details about the training setup
for BERT-L used of the reading comprehension
task in our experiments, which is similar to the
extractive reader setup in Longpre et al. (2019)
but using BERT-L. We train on the full data of
the QReCC training set, using Human rewritten
questions. Our implementation of the BERT ques-
tion answering modules follows that of the stan-
dard PyTorch (Paszke et al., 2019) implementations
from HuggingFace, and are trained on 4 NVIDIA
Tesla V100 GPUs. The model is trained to pre-
dict an answer span or abstain if the passage has
“No Answer”. For every query we obtain up to
25 paragraphs from the document that contains
the gold answer as identified by a human grader.
The paragraph with the answer is always used for
training, and a portion of the other paragraphs are
used in training as No Answer or “negative” exam-
ples. Using the development set we tune several
hyperparameters, most importantly the percentage
of negative examples to retain for training (“Pct
Neg. Ratio”). Fixed parameters and tuning details
are shown in Table 8.

B Annotation Guidelines

Instructions for question rewriting:

• Rewritten questions should be as close to the
original as possible.

• Questions should not contain any references
to the previous context of the conversation.

• Avoid using any pronouns in question
rewrites.

Instructions for answering questions:

• Put the rewritten question (original question
if it is already self-contained) in a web search
engine to produce the correct answer.

• Produce an answer, which should be short and
brief with minimum information required to
answer the question.

• The answers should be grammatically correct,
do not contain special symbols or any addi-
tional mark-up.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/


Table 7: Hyperparameter selection and tuning ranges for TRANSFORMER++ used for question rewriting.

MODEL PARAMETERS VALUE/RANGE

Fixed Parameters

Batch Size 16
Optimizer Adam
Vocabulary Size 150,263
Transformer Head GPT2 (medium)
Learning Rate Schedule Exponential Decay
Output Attention True
Max Input Sequence Length 1024
Max Output Sequence Length 30
Num Hyperparameter Search Trials 500

Tuned Parameters

Num Epochs [50, 100]
Initializer Range [0.01, 0.1]
Dropout [0.05, 0.2]
Attention Dropout [0.05, 0.1]
Residual Dropout [0.05, 0.1]
Learning Rate [1e − 3, 1e − 1]
Decay Steps [6000, 10000]
Decay Rate [0.7 , 0.9]
Activation Functions [ReLU, Leaky ReLU, GELU]

General

Model Size (# params) 350M
Avg. Train Time (per epoch) 12 hours

Table 8: Hyperparameter selection and tuning ranges for BERT-L used for reading comprehension.

MODEL PARAMETERS VALUE/RANGE

Fixed Parameters

Batch Size 32
Optimizer Adam
Learning Rate Schedule Exponential Decay
Num Epochs 2
Max Input Sequence Length 512
Max Span Length 30
Num Hyperparameter Search Trials 32

Tuned Parameters

Learning Rate [1e − 5, 5e − 5]
Pct Neg. Ratio [0.01, 0.5]

General

Model Size (# params) 330M
Avg. Train Time (per epoch) 8 hours



• Produce an answer that would be most natural
for a human conversation.

• Answers can contain up to a maximum of 30
words.

• When the answer is not a text, provide the
source URL only (e.g., a geo-location on a
map or a music video link).

C Pitfalls of the Query Rewriting
Metrics

Our evaluation results show that the text similarity
metrics, such as ROUGE and USE, often fall
short to reflect semantic similarity in case of
lexical paraphrases. Retrieval-based metrics, such
as Recall@10, are able to demonstrate better
correlation with human judgement. However,
retrieval-based metrics are more expensive to
compute since it requires an API call for every
query. Also, they rely on the underlying collection
as well as the ability of the search engine to handle
paraphrases. Our experiments show that text
similarity metrics, however flawed, are still able
to provide a good proxy for quickly assessing
QR performance and are suitable for comparing
models in the development phase during parameter
tuning. Retrieval-based metrics are useful to
better approximate human judgement but can
be computed for the best models only that were
pre-selected using text similarity metrics.

ROUGE-1 R metrics provides a very rough
estimate of the model performance by counting
the number of words missing from the generated
question rewrite in comparison with the ground
truth rewrite and does not have any mechanism
to distinguish which words are more crucial than
others. As a result, a question missing only a single
letter will receive the same score as a question
missing one of its most informative words. For
example, ROUGE(“When is Robert Downey Jr
birthday”, “When is Robert Downey Jrs birthday”)

= ROUGE(“When did Gabriel Garcia die”, “When
did Gabriel Garcia Marquez die”) = 0.75.

USE is more sensitive to such variations
and can better pick up on the character-level
similarities: compare to USE(“When is Robert
Downey Jr birthday”, “When is Robert Downey
Jrs birthday”)=0.96 and USE(“When did Gabriel
Garcia die”, “When did Gabriel Garcia Marquez
die”) = 0.91.

Web search results, while most accurately
correlates with human judgment, also reflect
sensitivity of the retrieval algorithm to the query
formulation as well as the collection-specific
selectivity of the query terms. The resulting
scores for our sample rewrites are R@10(“When
is Robert Downey Jr birthday”, “When is Robert
Downey Jrs birthday”)=0.6 and R@10(“When did
Gabriel Garcia die”, “when did Gabriel Garcia
Marquez die”) = 0.78.

D Examples of Query Rewrites

In Table 9 we show sample question rewrites from
top 3 QR models along with conversational context.

E Examples of Answers Found

In Table 10 we provide two sample answers found
by the baseline model. In the first example, the
baseline system picked the same passage as the
human annotator, but extracted a different answer
span from this passage. In the second example,
the baseline system picked a different passage than
the human annotator. While the produced answers
are not exact matches to the corresponding human
answers, we consider them as correct upon manual
inspection. This observation that a single question
in QReCC can have multiple correct answers poses
an important challenge for standard approaches to
QA evaluation.



Table 9: A sample of conversation snippets from the QReCC test set with the question rewrites produced by
Transformer++, CopyTransformer, and GECOR models.

Conversational context Transformer++ CopyTransformer GECOR
Q1: Did Nadia Comăneci
win any Gold medals in
the Olympics?
A1: Nadia Comăneci is
a five-time Olympic gold
medalist.
Q2: What about Silver?

Did Nadia Comăneci
win any Silver medals?

Did Nadia win
Silver medals?

What about Silver
medals?

Q1: What is range in
statistics?
A1: The Range is the
difference between the
lowest and highest values.
Q2: Describe some different
metrics to interpret it.

Describe some different
metrics to interpret
range in statistics.

Describe some different
metrics to interpret
range in statistics.

Describe some different
metrics to interpret
range.

Q1: What is nominal GDP?
A1: Nominal GDP is GDP
evaluated at current market
prices and includes all of the
changes in market prices
that have occurred during
the current year due to
inflation or deflation.
Q2: What is the difference
with real?

What is the difference
between nominal and
real GDP?

What is the difference
with real GDP?

What is the difference
with real GDP?

Q1: Tell me about lavender
plants?
A1: Lavandula is a genus of
47 known species of flowering
plants in the mint family,
Lamiaceae. It is native to the
Old World and is found
from Cape Verde and
the Canary Islands, Europe
across to northern and eastern
Africa, the Mediterranean,
southwest Asia to southeast
India.
Q2: What are the different
types?

What are the different
types of lavender plants?

What are the different
types of plants?

What are the different
types of plants?



Table 10: A sample of answers produced by our end-to-end baseline for conversational QA. The baseline model
can also produce relevant answers using spans that differ from the answers provided by the human annotators.

Human re-written question What are the educational requirements required to become a physician’s assistant?

URL https://www.geteducated.com/careers/how-to-become-a-physician-assistant

Predicted URL https://www.geteducated.com/careers/how-to-become-a-physician-assistant

Human passage . . . In most cases, a physician assistant will need a master’s degree from an accredited
institution (two years of post-graduate education after completing a four-year degree).
. . . Most applicants to PA education programs will not only have four
years of education, they will also have at least a year of medical experience.
. . . five steps to becoming a PA: Complete your bachelor’s degree (a science or
healthcare related major is usually best); Gain experience either working
or volunteering in a healthcare setting; Apply to ARC-PA accredited programs;
Complete a 2-3 year, master’s level program; Pass the PANCE licensing exam.

Found passage (Same as human passage.)

Human answer Complete your bachelor’s degree (a science or healthcare related major is usually best);
Gain experience either working or volunteering in a healthcare setting;
Apply to ARC-PA accredited physician assistant programs;
Complete a 2-3 year, master’s level PA program;

Baseline model answer a physician assistant will need a master’s degree from an accredited institution
(two years of post-graduate education after completing a four-year

Answer F1 15.38

Human re-written question What tools were used in the neolithic event?

URL https://sciencing.com/list-neolithic-stone-tools-8252604.html

Predicted URL https://stmuhistorymedia.org/neolithic-era-technology-advances-and-beginnings
-of-agriculture

Human passage . . . By the time the Neolithic came around, hand axes had fallen out of favor
. . . scientists consider the creation of all these tools a sign of early human ingenuity.
Scrapers Scrapers are one of the original stone tools, found everywhere where people
settled, . . . Blades While a scraper can be used for cutting into an animal, a longer,
thinner blade can be inserted deeper into a carcass, . . . Arrows and Spearheads Arrows
and spearheads are a more sophisticated shape than simple scrapers and blades. . . . Axes
The polished stone ax is considered one of the most important developments of the
Neolithic era. . . . Adzes The adze is a woodworking tool. . . . Hammers and Chisels
Chisels were made by attaching a sharp piece of stone to the end of a sturdy stick . . .

Found passage . . . The Neolithic Age was a period in the development of human technology, beginning
about 10,000 BCE, in some parts of the Middle East, and later in other parts
of the world, and ending between 4,500 and 2,000 BCE. . . . Hunting also became much
easier to accomplish with the introduction new of stone tools. The most common tools
used were daggers and spear points, used for hunting, and hand axes, used for cutting up
different meats, and scrappers, which were used to clean animal hides.

Human answer Scrapers. Scrapers are one of the original stone tools, found everywhere
where people settled, long before the Neolithic Age began. ...Blades. ...Arrows
and Spearheads. ...Axes. ...Adzes. ...Hammers and Chisels.

Baseline model answer The most common tools used were daggers and spear points, used for hunting,
and hand axes

Answer F1 19.05


