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Since the early 1990s, when the third author was a visiting PhD student at
Imperial College, he and Dov Gabbay have had many interactions. Usually
over the phone, they talked about science, publishing and other initiatives,
and invariably their conversations ended on a strategic note. Dov and the
third author of this paper share a fundamental vision on the status and
future of logic. To have a bright future, the discipline needs to be strongly
embedded in external uses and needs. Much of the innovation in logic over
the past decades has come from computer science, with new questions, new
modeling needs, new reasoning mechanisms, etc. To continue to strive, we
believe that logic should be embedded alongside its application areas, with
feedback back and forth through measurable evaluations, either theoretical
or experimental. It is clear that in many research institutes around the
world this is actually how logic and computer science have come to inter-
act. But we believe that logic can and should play a similar role vis-à-vis
other scientific areas, both traditional and non-traditional, such as analytic
philosophy, law, cognitive science, economics, information science, theology,
language, and political theory.

In more recent years, the interactions between Dov and the third author
have become less frequent, mainly because Dov has been looking at one set
of areas for inspiration and research questions (including law and philoso-
phy), while the third author of this paper has turned to another, organized
around information access. This paper deals with identifying, and assigning
meaning to, temporal information. It touches on at least two of Dov’s long-
standing interests, temporal logic and natural languages semantics. There
is very little symbolic reasoning in this paper, and the semantics we pursue
is shallow at best, but the paper does contribute to our understanding of
how to process natural language texts if we are ever going to have systems
that deal with the information contained in, for instance, news papers or
web pages, in an intelligent way.
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1 Introduction

Current information retrieval (IR) systems allow us to locate documents
that might contain pertinent information, but most of them leave it to the
user to extract useful information from a ranked list. This leaves the user
with a large amount of text to consume. Information extraction [Appelt
and Israel, 1999] (IE) is a core technology to help reduce the amount of
text that has to be read to obtain the desired information. Indeed, recog-
nizing entities and meaningful relations between them is key to providing
focused information access. Temporal IE provides a particularly interesting
task in this respect. Temporal expressions (timexes) are natural language
phrases that refer directly to time points or intervals. They convey tempo-
ral information on their own and also serve as anchors for events referred
to in text. From a user’s perspective, temporal aspects of events and en-
tities, and of text snippets, provide a natural mechanism for organizing
information. An example of an area in which accurate analysis of tempo-
ral expressions plays an important role is Question Answering (QA). For
instance, answering questions like “When was Van Gogh born?” requires
accurate identification of the date of birth of the person under consider-
ation (recognition) and rendering of the answer in some standard format
(normalization). Recognizing temporal expressions is now a “do-able” task,
even without tremendous knowledge engineering efforts. Moreover, in re-
cent years, the task of automatically interpreting (or normalizing) tem-
poral expressions has begun to receive attention [Mani and Wilson, 2000;
Schilder and Habel, 2001].

The importance of processing timexes is reflected by the large number of
NLP evaluation efforts where they figure. Recognizing timexes is an integral
part of many IE tasks (e.g., MUC-6 and 7 Named Entity Recognition tasks,
ACE-2004 Event Recognition task). There are various annotation guidelines
for timexes [Ferro et al., 2004; Setzer and Gaizauskas, 2000; Pustejovsky et
al., 2003]. And a timex annotated corpus has been released with the aim of
improving the processing of timexes [TimeBank, 2004].

The type of timexes considered in a typical IE task are limited to date
and time values [MUC-6, 1995; Chinchor, 1997]. In contrast, at the 2004
Temporal Expression Recognition and Normalization [TERN, 2004] eval-
uation, a wide variety of timexes are considered—which makes the task
more interesting and much more challenging. The participants in the 2004
TERN evaluation evinced a notable split in their approaches to temporal
IE: systems performing only recognition were all machine-learning-based,
while systems performing the full recognition and normalization task were
purely rule-based. The message from the recognition task was clear: given a
tagged corpus, machine learning provides excellent recognition results with
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minimal human intervention. Furthermore, such a data-driven approach
may be preferable because of its portability and robustness.

For the normalization task, it is not so obvious how to directly apply
machine-learning methods based on sequence labeling. The classes involved
(temporal values) are potentially unbounded, and a significant proportion
of timexes require non-local context for interpretation. Additionally, many
timexes require temporal computation with respect to contextually given
information—the connection between form and content is mediated by both
context and world knowledge.

What are the opportunities for using robust, “shrink-wrapped” machine-
learning tools for temporal IE? Ultimately, we want to build a portable,
maintainable system that can serve us well as a component for more high-
level tasks. To this end, we want to make as much use of off-the-shelf
machine-learning packages as possible. We would also like to limit the
scope of rule application, in order to simplify rule-writing and maintenance.
In this paper, we describe two sets of experiments that bring us closer
to this goal. In the first set, we demonstrate that decoupling recognition
from normalization—feeding a rule-based normalizer with an automatically
learned recognizer—can improve overall performance. In the second set,
we decompose the normalization task, allowing us to find opportunities for
applying data-driven methods for disambiguation within normalization.

2 Background

2.1 The TERN Setting

For the experiments we report on in this paper, we adopt the tasks, data,
and evaluation methodology of the 2004 TERN evaluation [TERN, 2004].
The TERN evaluation is organized under the auspices of the Automatic
Content Extraction program (ACE, http://www.nist.gov/speech/tests/
ace/), whose objective is to develop natural language processing technology
to support automatic understanding of textual data. TERN consists of two
tasks: recognition and normalization. Timex recognition involves correctly
detecting and delimiting timexes in text. Normalization involves assigning
recognized timexes a fully qualified temporal value. Both tasks are defined,
for human annotators, in the TIDES TIMEX2 annotation guidelines [Ferro
et al., 2004]. These introduce an SGML element, TIMEX2, to mark timexes.
TIMEX2 elements may contain a number of attributes; we focus on the VAL
attribute, which indicates the actual reference of the TIMEX2. Its range of
values are an extension of the ISO 8601 standard for representing time [ISO
8601, 1997].

The recognition and normalization tasks are performed with respect to
corpora of transcribed broadcast news speech and news wire texts from ACE
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2002–4, marked up in SGML format and hand-annotated for TIMEX2s. The
training and test sets for the TERN evaluation and for all of the experiments
we describe in this paper consist of 511 and 192 documents with 5326 and
1828 TIMEX2s, respectively.

We use the TERN official scorer to evaluate our performance but add sev-
eral metrics. The official scorer computes precision, recall, and F-measure
for identification of TIMEX2s (overlap between a gold standard and a sys-
tem TIMEX2) and exact-match of TIMEX2s (exact overlap) and for the at-
tributes; since we focus on VALs, we report only VAL scores. For VALs, the
scorer computes precision as the ratio of correct VALs to attempted VALs
and recall as the ratio of correct VALs to possible VALs in the TIMEX2s
recognized by the system—not all TIMEX2s in the gold standard. Since
we are interested in the end-to-end task, we report results with recall (and
F-measure) computed with respect to all possible TIMEX2s. We refer to
the TERN versions as relative recall (RR) and F (RF), and to our versions
as absolute recall (AR) and F (AF).

2.2 Recognition

The recognition task is to identify phrases that refer to time points. The
TIDES guidelines limit the set of markable timexes (indicated with the
TIMEX2 tag) to those phrases headed by a temporal trigger word. The
latter seem to fall into several categories. Some refer to time units of def-
inite duration (minute, afternoon, day, night, weekend, month, summer,
season, quarter, year, decade, century, millennium, era, semester). Others
refer to definite points in time (January, Monday, New Year’s Eve, Washing-
ton’s Birthday, yesterday, today, tomorrow, midnight). Still others indicate
repetition with respect to a definite period (daily, monthly, biannual, semi-
annual, hourly, daily, monthly, ago). And some refer to temporal concepts
that can at least be oriented on a timeline with respect to some definite
time point (future, past, time, period, point, recent, former, current, ago,
currently, lately).

Syntactically, TIMEX2s must be one of the following: noun, noun phrase,
adjective, adverb, adjective phrase, or adverb phrase. All premodifiers and
postmodifiers of the timex must be included in the extent of the TIMEX2
tag, e.g.,

• Premodifiers: 8 winters, the past week, four bad years, about 15 min-
utes, less than a week

• Postmodifiers: Nearly three years later, the week before last, two years
ago, three years in prison, Only days after his father was assassinated,
months of Israeli-Palestinian bloodshed and Israeli blockades
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Either rule-based systems or machine learning can be used for recognition,
but as we saw in the 2004 TERN evaluation, all the recognition-only systems
(which generally achieved better recognition scores than the full-task sys-
tems) were machine-learning-based. The reasons for this are clear: recogni-
tion can easily be cast as a sequence-labeling task, for which good machine-
learning systems exist. Unsurprisingly, the recognition components of the
full-task systems were all rule-based. Normalization is most straightfor-
wardly conceived of as interpreting recognition rules. Thus, it is natural to
develop a single set of rules to be used for recognition and paired with inter-
pretation functions for normalization. However, the result is a monolithic
rule-based system, which requires significant engineering efforts to build and
maintain.

In this paper we explore the possibility of breaking down the task into
smaller pieces and using the best methods possible for each sub-task in
an effort to develop a more robust solution to the temporal IE task. The
first step, described in §3, is to decouple recognition from normalization.
Experimental results indicate that this decoupling (which both improves
recognition and allows a liberalization of the normalization rules) improves
overall, end-to-end performance.

2.3 Normalization

Timex normalization is the problem of assigning an ISO 8601 value to a
recognized timex. The TIDES guidelines distinguish several kinds of val-
ues; our normalization system handles time points, durations, sets, and the
past, present, and future tokens. Time points are expressed by three kinds
of timexes: fully qualified, deictic, and anaphoric. Fully qualified timexes,
such as March 15, 2001, can be normalized without reference to any other
temporal entities. Deictic and anaphoric timexes, on the other hand, must
be interpreted relative to another temporal entity. Deictic timexes, such as
today, yesterday, three weeks ago, last Thursday, next month, are interpreted
with respect to the time of utterance—for our corpus, the document time
stamp. Anaphoric timexes, such as March 15, the next week, Saturday, are
interpreted with respect to a reference time—a salient time point previously
evoked in the text that may shift as the text progresses. Some anaphoric
timexes (those without an explicit direction indicator such as next or previ-
ous) depend on other factors, such as the tense and aspect of the verb they
modify, to determine whether the time point they refer to is before or after
the reference time.

Durations are generally expressed by timexes headed by a unit (day,
months, etc.). However, even fully qualified timexes expressing durations,
i.e., those in which both the quantity and the unit are specified, such as six
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months, 800 years, three long days, are systematically ambiguous between
a duration and an anaphoric point reading. For example, in the sentence
The Texas Seven hid out there for three weeks, the timex three weeks refers
to a duration, whereas in the sentence California may run out of cash in
three weeks, the same timex refers to a point three weeks after the reference
point.

Work on normalization with respect to TIMEX2-like guidelines goes back
to [Mani and Wilson, 2000], who use a rule-based system to identify and
normalize timexes. Like our work in §4 (but unlike more recent work on
normalization), they also use an automatically learned classifier within their
system, but only for one task—distinguishing specific and generic uses of
today. Unlike our work, however, they restrict normalization to date-valued
expressions; the question of distinguishing points and durations, e.g., does
not arise. Other rule-based normalization systems include [Saquete et al.,
2002; Schilder, 2004], as well as the TERN full-task systems. Building
on the approach in [Mani and Wilson, 2000], we present in §4 a modular
timex normalization system architecture that allows us to separate context-
independent interpretation, for which we continue to use a rule-based ap-
proach, from context-dependent processing.

3 Decoupling Recognition from Normalization

Here, we describe a set of experiments (reported on in greater detail in
[Ahn et al., 2005]) in which we run the same rule-based timex normalizer
on the output of several different timex recognizers. Our basic monolithic
rule-based system is a two-pass system. In the first pass, a document is
tokenized, POS tagged and chunked using TreeTagger [TreeTagger, 2004],
and then a series of regular expressions is used to find timexes. In the sec-
ond pass, the document time stamp and all sentences containing TIMEX2s
are extracted; the tense of each sentence (based on the first verb chunk)
is also determined. Interpretation rules paired with the regular expressions
for recognition are used to generate normalized values for each TIMEX2.
Anaphoric and deictic expressions are evaluated with respect to the times-
tamp and tense information.

Recognition with Conditional Random Fields
A recently-introduced machine learning technique for labeling and segment-
ing sequence data is Conditional Random Fields (CRFs, [Lafferty et al.,
2001]). Unlike Hidden Markov Models, CRFs are based on exponential
models in which probabilities are computed based on the values of a set of
features induced from both the observation and label sequences. They have
been used in POS tagging, shallow parsing [Sha and Pereira, 2003], and
named entity recognition [McCallum and Li, 2003]. We use the minorThird
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Correct Incorrect P RR RF AR AF
Rule-based 782 143 0.845 0.699 0.765 0.449 0.586
CRF 885 231 0.793 0.583 0.672 0.501 0.614
Gold standard 955 219 0.812 0.549 0.655 0.549 0.655

Table 1. Normalization results

implementation of CRFs for extracting timexes from text [Cohen, 2004].
Initial recognition results with the default features are: 98%/84%/91%
(P/R/F) for identification and 80%/66%/74% (P/R/F) for exact-match.
An error analysis suggested several additional features which resulted in
substantial performance improvements: 98%/86%/91% (P/R/F) for iden-
tification and 86%/75%/80% (P/R/F) for exact-match.

Decoupling Experiments
We ran our normalizer on the output of two different recognition systems—
the rule-based recognizer of our monolithic system and the optimized CRF
recognizer—and on the gold standard, in order to see the effects of recogni-
tion performance on normalization performance. Our expectation was that
since the normalization rules are basically identical to the rule-based recog-
nizer, any additional recognized timexes would not be normalized anyhow.

Table 1 lists the results of these three runs on the TERN test corpus.
For our purposes, AR and AF are more important than RR and RF. The
results indicate that better recognition does help normalization. We ana-
lyzed the gold standard and rule-based recognizer runs to determine why.
The former obviously presents more timexes to the normalizer than the
latter; the question is why, given that the patterns for the normalizer and
the rule-based recognizer are the same, the normalizer attempts these extra
timexes. The two main reasons are the reliance of the rule-based recognizer
on unreliable upstream components (tokenizer, tagger, and chunker) and
our liberalization of the normalizer rules.

4 Zooming in on Normalization

From the perspective of the end-to-end task of temporal IE, our experi-
ments so far suggest that it is worthwhile to optimize recognition and nor-
malization independently. By decoupling normalization from recognition,
not only do we allow for independent optimization of recognition, but we
also give ourselves the opportunity to conceive of normalization as an inde-
pendent task—rules do not need to serve double-duty for both recognition
and normalization. We now delve into normalization, exploring one way
of decomposing normalization both to simplify the rule set and to bring in
data-driven methods.
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In the rest of this section, we lay out our analysis of the task and explain
how we tackle the various sub-tasks. In §5, we focus on the machine-learning
experiments we perform as part of normalization. We devote §6 to describ-
ing our end-to-end normalization experiments.

4.1 Decomposing the Normalization Task

We seek a robust, maintainable approach to the normalization task, one
that allows for the use of data-driven techniques, where appropriate, and
circumscribes the scope of rule application to simplify rule development.
To that end, we decompose the task as described above into five discrete
stages:

1. Lexical lookup: mapping names to numbers, units to ISO values, etc.

2. Context-independent composition: combining the values of the lexi-
cal tokens within a timex to produce a context-independent semantic
representation.

3. Context-dependent classification: determining whether a timex is a
point or duration, looks forward or backward, makes specific or generic
reference, etc.

4. Reference time, or temporal focus, tracking: for anaphoric timexes,
whose values must be computed with respect to a reference time.

5. Final computation: combining the results of all of these steps to pro-
duce a final normalized value.

This architecture clearly separates context-independent processing (stages
1 and 2), for which finite-state rules can be relatively easily developed, from
context-dependent processing (stages 3 and 4), for which finite-state rule
sets can quickly become unwieldy. It also distinguishes context-dependent
classification tasks, which rely on primarily local context, from reference
time tracking, which requires more global information. The final stage
makes use only of meta-data produced by the earlier stages and does no
linguistic processing.

In an error analysis of a purely rule-based normalization system, we have
observed observed that classification of timexes (stage 3) is a significant
source of error [Ahn et al., 2005]. Now, classification of expressions into a
limited set of classes using local context is exactly the kind of task at which
machine-learning-based classifiers excel. Thus, this separation of tasks pro-
vides us with an opportunity to deploy an off-the-shelf machine learning
package within the normalization task.
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4.2 Addressing the Interpretation Stages

We use a rule-based system to handle stages 1 and 2 (which we refer to as
pre-normalization). Timex lexicons and composition mechanisms may be
learned, but our lexicon and composition rule set are relatively small and
unambiguous, so writing and maintaining them is more or less straightfor-
ward. In addition to generating a context-independent representation for
a timex, the composition mechanism also determines whether the timex is
ambiguous in a way that can be resolved by one of the context-dependent
classifiers.

Stage 3 is where we study the potential contribution of data-driven meth-
ods to timex normalization. We make use of a maximum entropy classifier
to perform context-dependent classification. Based on the error analysis of
[Ahn et al., 2005], we have isolated three classification tasks that contribute
to the errors their rule-based system makes and seem amenable to machine
learning from relatively local surface features:

• The first task is distinguishing whether an ambiguous unit phrase
refers to a point or a duration; we refer to this as the point-duration
problem.

• The second task (direction problem) is determining whether an am-
biguous anaphoric point-referring phrase refers to a point before, after,
or the same as the reference time. Some of the instances of this class
are generated by the first classifier.

• The third task (the today problem) is determining whether an occur-
rence of the word today refers specifically to the day of the article or
broadcast or generically to the present.

Section 5 is devoted to a detailed description of the methods used to tackle
these tasks.

As to stage 4, we experiment with two very simple models of temporal
focus tracking. In the first, the system uses the document time stamp as the
reference time for all anaphoric expressions. This is an oversimplification
of the problem of temporal focus, but it seems to be reasonable at least
for day names in short news items. In the second temporal focus model,
the system uses the most recent previous point-referring timex of suitable
granularity as the reference time for an anaphoric expression. This, too, is
a simplifying assumption, since it ignores the effects of discourse structure
on focus tracking, among other things. (In both cases, deictic expressions,
such as tomorrow and three years ago, are still computed with respect to
the document time stamp).
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Finally, we take a rule-based approach to stage 5. Temporal arithmetic
is performed to derive a fully qualified temporal value from the context-
independent value and the reference time of a timex, together with infor-
mation from the context-dependent classifiers. Of the five stages of normal-
ization, this stage is least obviously amenable to machine learning.

5 Developing the Classification Experiments

We now describe our machine-learning approach to the three classification
tasks that make up stage 3 of our strategy for the overall normalization
task. We use a maximum entropy classifier for our experiments [Berger et
al., 1996]. Specifically, we use the minorthird implementation of maximum
entropy classifiers, which uses the same underlying model as CRFs applied
to sequence labeling [Cohen, 2004].

5.1 Generating the Training Data

The training material is a tagged corpus consisting of plain text in which
the timexes to be classified are marked by XML tags that encode the classes,
e.g., ...<forward><dir_unknown>Tuesday</dir_unknown></forward>....
The inner XML tag marks a timex as an instance to be used for training
while the outer XML tag assigns a class to the instance. The task is to learn
from these example timex instances in the training corpus rules or patterns
to classify new instances.

To generate the training data, we use the output of our pre-normalization
stages, which tags ambiguous time unit phrases (for the point-duration
task), ambiguous anaphoric timexes (for the direction task), and occur-
rences of today (for the today task). Not all unit phrases are ambiguous
(e.g., two years ago is always point-referring), nor are all anaphoric timexes
ambiguous with regards to direction (e.g., a month later is always forward-
looking), so what counts as an instance for these problems is dependent on
our pre-normalization.

Given that, generating training data for the point-duration and today
tasks is straightforward, since the classes are reflected directly in the final
normalized values. The final normalized value of a duration always begins
with a P followed by a quantity indication, whereas that of a point begins
with a digit. Similarly, occurrences of today that make generic reference are
normalized as PRESENT REF, while specifically referring occurrences have full
date values.

Generating training data for the direction task, is non-trivial as it as-
sumes a model of temporal focus tracking. We produced two training sets
for the task, based on the two focus models our normalization system can
use: timestamp-based and recency-based (see §4.2). As both are simplistic
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models, the generated training data, in either case, is noisy.

5.2 The Point-Duration Problem

For the point-duration task, ambiguous time unit phrases need to be clas-
sified into three classes: point, duration and other. Using only lexical fea-
tures, both in the timex itself and in the left and right context (window of 3
words), the system achieves an accuracy of 0.73 (frequency baseline: 0.40).

5.3 The Direction Problem

Confronted with the direction problem for day names in their date normal-
ization system, Mani and Wilson [Mani and Wilson, 2000] use hand-crafted
rules which look at the tense of the closest verb in the same clause as a
timex to determine the direction. The rule-based direction classifier we use
in our experiments in §6 is based on this method, but here, we describe our
machine learning approach. Tense alone cannot be used to identify direction
accurately (see our error analysis in §6), so additional features, such as lexi-
cal items such as last and earlier, need to be used for the learning algorithm
to produce a reasonable result. Using only such lexical features as these,
with a context window of 3 words, the system, using the timestamp-based
dataset, has an accuracy of 0.59 (frequency baseline: 0.44). Adding tense
(derived from the POS tags of the closest finite verbs) as a feature improves
the result by 0.02 (to 0.61). Using the same features with the recency-based
data yields an accuracy of 0.57 (we discuss the difference in §6).

A closer look at the confusion matrix indicates that the classifier has
problems in distinguishing between the same and backward classes. More
than 30% of each class is assigned to the other class. These are the main
sources of errors since the two classes constitute 89% of the total test in-
stances.

5.4 The Generic-Specific Problem

Mani and Wilson [Mani and Wilson, 2000] also report that ambiguity result-
ing from generic vs. specific meaning of timexes are a main source of error.
They single out the timex today, which is most subject to this ambiguity,
and automatically acquire a classifier for it. Their best system achieves an
accuracy of 0.80. We have developed a similar classifier for our system using
the features they propose. The resulting classifier achieves an accuracy of
0.85 in a 70/30 split experiment on the training data. Unfortunately, our
data for this classifier is not only sparse, but heavily skewed (90% of the
instances are specific). Thus, our system still underperforms the frequency
baseline 0.89. In the experiments we describe in §6, we use the baseline
classifier for this task.
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5.5 Reflections

In general, all of these classification tasks are more difficult than the recog-
nition task, where machine-learning approaches achieve very good results.
Although two of the systems are better than the frequency baseline, there is
a lot of room for improvement. Simple lexical features, which are successful
in the recognition task, do not have the same impact on these classification
tasks. This suggests a potential gain by providing the learner with more
semantically motivated features. For now, though, we want to see how the
results from relatively straightforward application of off-the-shelf machine
learning affects our normalization task.

6 Experiments

We now describe the experiments we performed in trying to answer our
main research question: whether data-driven methods can be successfully
applied to the timex normalization task. We describe the approaches we
compared, then the metrics used, the results, and, finally, an error analysis.

6.1 Experimental Setup

The system we used for our experiments consists of the following com-
ponents. For the pre-normaliation stages (1 and 2), there are regular-
expression grammars written in the JAPE formalism that run within the
GATE system [Cunningham et al., 2002]. For stage 3, there are three kinds
of classifiers for the point-duration and direction tasks: baseline classifiers
(which assign the majority class), MaxEnt classifiers, described in §5 and
rule-based classifiers, briefly described below. Also, there is the baseline
classifier for the today task. For stages 4 and 5, there is a perl script (us-
ing the Time::Piece module) that traverses a document, tracking reference
times and computing final normalized values.

The JAPE grammars include both simple (stage 1) grammars to nor-
malize number expressions, month names, day names, and unit names (and
identify likely years) and a larger (stage 2) grammar that takes these an-
notations as input and generates context-independent values for TIMEX2s.
Many rules generate final normalized values, since many expressions (e.g.,
full dates, month/year expressions) do not require contextualizing. The
remaining rules generate a context-independent value and, for ambiguous
unit phrases, anaphoric points, and occurrences of today, a classification
problem.

The rule-based classifiers are simple. The point-duration classifier has
rules that match expressions that are likely point or duration indicators
either within a unit phrase or immediately to the left of a unit phrase.
The direction classifier uses the same heuristic as [Mani and Wilson, 2000],
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relying on TreeTagger for part-of-speech tagging and chunking: it looks at
the closest preceding verb chunk—if it is past or perfect tense, it labels
the instance as “backward”; if it is present-progressive or a present tense
copula, it labels the instance as “same”; and if it is any other present-tense
(including modals, such as will, shall, may), it labels the timex as “forward.”

We used the classifier module of the minorthird package for training a
maximum entropy-based classifier. The tasks of transforming the instances
into feature vectors and estimating parameters are done automatically by
the system.

6.2 Ten Approaches
We ran the system over the TERN test corpus (192 documents, 1828 TIMEX2s,
of which 1741 have a non-null VAL attribute), varying the classifiers and
the reference tracking model used. Note that for all configurations, we used
the baseline classifier for the today task, which assigns specific to every
instance.

1. Baseline classifiers (assign majority class—point-duration: duration,
direction: backward); timestamp-based

2. Baseline classifier for point-duration, rule-based classifier for direction;
timestamp-based

3. Rule-based classifiers for both tasks; timestamp-based

4. Baseline classifier for p-d, MaxEnt classifier for dir; timestamp-based

5. MaxEnt classifiers for both tasks; timestamp-based

6. “Perfect” classifiers; timestamp-based

7. Baseline classifiers; recency-based

8. Baseline classifier for p-d, rule-based classifier for dir; recency-based

9. Rule-based classifiers for both tasks; recency-based

10. Baseline classifier for p-d, MaxEnt classifier for dir; recency-based

11. MaxEnt classifiers for both tasks; recency-based

12. “Perfect” classifiers; recency-based.

We include two “perfect” runs (6 and 12) to set a ceiling on the overall
normalization performance of the classifiers.
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6.3 Metrics

We use the official TERN scorer to evaluate our normalization performance.
As we mentioned in §2.1, the scorer computes precision, recall, and F-
measure for each normalization attribute; since we are focusing on the core
VAL normalization, we report only VAL scores. For the TERN scorer, pre-
cision is the ratio of correctly normalized VALs to attempted VALs; recall,
the ratio of correct VALs to possible VALs in the recognized TIMEX2s; and
F-measure, (2 ∗ P ∗ R)/(P + R). Recall (and, F-measure) is computed not
with respect to all possible TIMEX2s in the gold standard but only with re-
spect to the TIMEX2s recognized by the system. Because we are interested
in the end-to-end task, we also report results with recall (and F-measure)
computed with respect to all possible TIMEX2s. We refer to the TERN
versions as relative recall (RR) and F-measure (RF), and to our versions as
absolute recall (AR) and F-measure (AF).

Since we use the same recognizer output for all of our runs, the difference
between the relative and absolute measures is immaterial in comparing these
results, but the absolute measures make comparison with other systems
clearer.

6.4 Results

Our results are given in Table 2, with the results from the best system at
TERN for comparison (row 13). While our results are not yet up to that
level, they are competitive with other systems; AF-scores for the TERN
systems ranged from 0.439 to 0.830, with an average of 0.657.

Overall, the best (non-perfect) runs for each reference tracking model use
the baseline p-d classifier and the MaxEnt dir classifier (AF-scores of 71.3%
and 70.1% for timestamps (run 4) and recency-based (run 10, respectively).
In each case, adding the MaxEnt p-d classifier reduces performance slightly
(70.4% and 69.4% for runs 5 and 11), but in any case, the performance
remains several points above that of any of the rule-based runs (F-scores
between 66.5% and 66.9%). We comment on this fall-off in performance
when adding point-based classifiers below. Comparing the two reference
tracking models, it is clear that the timestamp-based model outperforms
the recency-based model. We discuss the reasons for this below, as well.

There is clearly still room for improvement, both in the classifiers (as
can be seen in comparisons with the “perfect” runs) and for the other com-
ponents of the system. In addition to looking at classifier performance
independently, we have performed an error analysis of the “perfect” runs to
see where the other components go wrong. Again, see below.

Returning to our research questions, how can data-driven techniques be
brought to bear on the normalization task? Our experiments show that
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Correct P RR RF AR AF
1 1063 0.733 0.694 0.713 0.611 0.666
2 1066 0.736 0.696 0.716 0.612 0.669
3 1063 0.734 0.694 0.714 0.611 0.667
4 1138 0.784 0.743 0.763 0.654 0.713
5 1124 0.775 0.734 0.754 0.646 0.704
6 1230 0.848 0.803 0.825 0.706 0.771
7 1060 0.734 0.692 0.713 0.609 0.666
8 1059 0.735 0.692 0.713 0.608 0.666
9 1058 0.734 0.691 0.712 0.608 0.665
10 1117 0.774 0.730 0.751 0.643 0.701
11 1105 0.765 0.722 0.743 0.635 0.694
12 1214 0.841 0.793 0.816 0.697 0.762
13 1389 0.866 0.837 0.851 0.798 0.830

Table 2. Normalization experiments; row numbers 1–12 refer to the list of
approaches in §6.2.

data-driven methods outperform rule-based methods for crucial sub-tasks
within the overall normalization task. Can we use “shrink-wrapped” data-
driven language-processing solutions to make the semantic interpretation
problem of timex normalization more robust, modular, and easily main-
tainable? The answer is clear. The relative ease of generating these runs by
swapping out different classifiers and temporal reference tracking modules
suggests a clear “yes.” Our staged architecture has done two things for
us. (1) It has limited the set of absolutely required rules to both context-
independent pre-normalization, where no rule has to make reference to any
information outside of a given timex, and final computation, where rules
make reference only to meta-data (the preliminary value generated by the
pre-normalization, the classification values generated by the classifiers, and
the reference time generated by the reference model). (2) It has identified a
potential place for data-driven methods within the normalization process—
namely, incorporating contextual information—and made it straightforward
to experiment with both data-driven and rule-based methods to tackle this
sub-task.

6.5 Where the Errors Originate

Our analysis of the final normalization performance of the perfect runs (6
and 12) allows us to pinpoint errors arising from the non-classifier stages of
our system and allows us to limit the error analysis of the other runs to the
classification results. Of the 216 incorrectly normalized TIMEX2s in run 6,
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Baseline Rule-based MaxEnt
Point-duration 40% 54% 73%
Direction (timestamp) 46% 39% 62%
Direction (recency) 43% 38% 57%

Table 3. Classification accuracy results.

63 result from problems in the pre-normalization stages, including a single
rule bug involving time zones that resulted in 36 errors. 26 errors arise from
the recognizer extent errors; 18 errors, from the temporal reference model
contributes 18 errors; and 6 errors, from temporal computation in stage 5.
46 errors are the result of a bug in the generation of the gold standard for
the p-d classifier: durations of unspecified length are erroneously labeled as
points. 46 more errors result from classes of timexes (sets and non-specific
timexes) whose instances are ambiguous with point- and duration-referring
timexes. For the 85 timexes that are recognized but not normalized, the
failure is attributable to a recognition extent error or an omission in the
pre-normalization rule base.

To see the effect of varying temporal reference models, we turn to the
other “perfect” run, run 12, and look at anaphoric timexes. Even though at
least 18 errors in the timestamp-based perfect run result from poor temporal
reference tracking, the recency-based model does no better. Why? In one
document, 4 of the timestamp-based errors occur in a chain, and because of
a recognition extent error, the timex immediately preceding the chain that
establishes the anchor point is not normalized at all, so the recency-based
model also fails on all four timexes. For several other timexes, the recency-
based model chooses the correct reference time, but because of errors in
stage 5, the wrong final value is computed. Finally, in the remaining cases,
neither the timestamp-based nor the recency-based model is sufficient to
account for phenomena that are known to be hard, such as anchoring to an
event, discourse effects, or shifts in granularity that allow for non-specific
reference. Additionally, the recency-based model introduces several errors
of its own.

Turning to the ambiguous point-referring timexes that are sent by stage 2
to the p-d classifier, we see why there is an across-the-board fall-off in end-
to-end performance when adding a rule-based or MaxEnt classifier even
though their classification accuracy is much better than the baseline (see
Table 3). 73 of the 83 ambiguous point-referring timexes are ones that
even the perfect runs normalize incorrectly (for various reasons, all among
those outlined above). Furthermore, none of the 102 “other” timexes (with
respect to the p-d task) are correctly normalized by the perfect runs (they
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refer to non-specific or quantified entities, which have limited support in the
final normalizer). Meanwhile, almost all of the 86 durations are normalized
correctly. Since the baseline labels all instances as durations, it only misses
10 points that might have been correctly normalized in the end. The other
classifiers have to have perfect accuracy on durations and recognize some of
those 10 points as points to beat that, and even then, the difference is not
very large.

Where the MaxEnt classifiers do make a difference is in the dir task. Here,
even though the improvement in classification accuracy over the baseline is
smaller than for the p-d task (see Table 3), using the MaxEnt dir classifier
with either temporal reference model results in F-score improvements of 3 to
4 percentage points over both the baseline and the rule-based dir classifier.
Of course, in terms of classification accuracy, the rule-based classifier, while
doing better than chance, actually does worse than the baseline. While
tense may be an important feature in deciding direction, it is far from the
only feature.

Comparing the two MaxEnt classifiers, we see that the classifier trained
and tested on data generated using the timestamp reference model outper-
forms the one with the recency-based model. The classifiers have a broadly
similar distribution of misclassified instances: they have difficulty discrimi-
nating between the “backward” and “same” classes; the main difference in
accuracy is due to recall of the “same” class. One possible explanation for
the difference between the classifiers is that the stage 2 process is mistakenly
labeling some deictic timexes as anaphoric ones, and a cursory examination
of the data seems to bear this out: while deictic timexes such as today and
this week are correctly flagged as deictic in stage 2, others, such as this
afternoon are not.

7 Conclusions

In performing IE tasks, we would like to make as much use as possible of
off-the-shelf, shrink-wrapped machine learning packages rather than going
through the time-consuming process of manually developing rule-based sys-
tems. To that end, we have presented a staged temporal IE architecture
that allows for experimentation with different approaches to different parts
of the normalization task. Within this architecture, we have identified sub-
tasks that seem amenable to a machine-learning approach, and we have
performed several experiments comparing machine-learning and rule-based
approaches to these sub-tasks.

Overall, we find that data-driven methods can be applied at several
points within a temporal IE system. In fact, by dividing the task into
stages, we find that the tasks that require the most complex rule systems—
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incorporating a variety of information to make classification decisions—are
precisely the ones that are well-suited for machine learning. Thus, by con-
fining rule-based components to context-independent stages, we can vastly
simplify their development and, at the same time, explore the use of data-
driven methods in semantic normalization.

A major obstacle in using machine learning to acquire classifiers is gen-
erating reliable training data. We are reconsidering the ordering of the
stages in our architecture—rather than have the rule-based component of
stage 2 pick out, for instance, the ambiguous unit phrases for stage 3 clas-
sification as points, durations, sets, etc., perhaps all unit phrases could be
classified prior to stage 2. This would result in much more training data
for learning this classifier and would further simplify the rules required for
context-independent interpretation.

We plan to develop more accurate and robust of temporal reference mod-
els. The main problem here is the sparsity of explicit timexes and the
interaction of temporal reference with event reference. There is a lot of
theoretical work on temporal reference, and the interaction between events
and times; see e.g., [Mani et al., 2005]. Recent computational work [Mani
and Schiffman, to appear] using machine learning to assign reference times
to sequences of clauses is also relevant, as are the TimeML guidelines and
TimeBank corpus, which mark up not just timexes but also events and links
[Pustejovsky et al., 2002; TimeBank, 2004].

Ultimately, we want our temporal IE work to end up as a component
within a broader end-user task, such as temporal question answering or text
mining, both to motivate and inform future annotation and architectural
choices, and because we believe this will uncover new aspects of temporal
IE.

Acknowledgments

David Ahn was supported by the Netherlands Organization for Scientific
Research (NWO) under project number 612.066.302. Sisay Fissaha Adafre
was supported by NWO under project number 220-80-001. Maarten de
Rijke was supported by grants from NWO, under project numbers 365-20-
005, 612.069.006, 220-80-001, 612.000.106, 612.000.207, 612.066.302, 264-
70-050, and 017.001.190.

BIBLIOGRAPHY
[Ahn et al., 2005] D. Ahn, S. Fissaha Adafre, and M. de Rijke. Extracting Temporal

Information from Open Domain Text: A Comparative Exploration. Journal of Digital
Information Management, 3(1):14–20, 2005.

[Appelt and Israel, 1999] D. Appelt and D. Israel. Introduction to information extrac-



Recognizing and Interpreting Temporal Expressions 19

tion technology: IJCAI-99 tutorial, 1999. URL: http://www.ai.sri.com/~appelt/
ie-tutorial/.

[Berger et al., 1996] A. Berger, S. Della Pietra, and V. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71,
1996.

[Chinchor, 1997] N. Chinchor. MUC-7 named entity task definition, September 1997.
URL: http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/
ne%_task.html.

[Cohen, 2004] W. Cohen. Methods for identifying names and ontological relations in text
using heuristics for inducing regularities from data, 2004. URL: http://minorthird.
sourceforge.net.

[Cunningham et al., 2002] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
GATE: A framework and graphical development environment for robust NLP tools
and applications. In Proceedings of the 40th Anniversary Meeting of the Association
for Computational Linguistics, 2002.

[Ferro et al., 2004] L. Ferro, L. Gerber, I. Mani, and G. Wilson. TIDES 2003 Standard
for the Annotation of Temporal Expressions. MITRE, April 2004.

[ISO 8601, 1997] ISO 8601: Information interchange – representation of dates and times,
1997.

[Lafferty et al., 2001] J. Lafferty, F. Pereira, and A. McCallum. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings
of the International Conference on Machine Learning, 2001.

[Mani and Schiffman, to appear] I. Mani and B. Schiffman. Temporally anchoring and
ordering events in news. In J. Pustejovsky and R. Gaizauskas, editors, Time and
Event Recognition in Natural Language. John Benjamins, to appear.

[Mani and Wilson, 2000] I. Mani and G. Wilson. Robust temporal processing of news.
In Proceedings of the 38th ACL, 2000.

[Mani et al., 2005] I. Mani, J. Pustejovsky, and R. Gaizauskas, editors. The Language
of Time: A Reader. Oxford University Press, 2005.

[McCallum and Li, 2003] A. McCallum and W. Li. Early results for Named Entity
Recognition with conditional random fields, feature induction and web-enhanced lex-
icons. In Proceedings of the 7th CoNLL, 2003.

[MUC-6, 1995] MUC-6. Named entity task definition, May 1995. URL: http://www.cs.
nyu.edu/cs/faculty/grishman/NEtask20.book_1.html.

[Pustejovsky et al., 2002] J. Pustejovsky, R. Sauri, A. Setzer, R. Gaizauskas, and B. In-
gria. TimeML Annotation Guidelines, 2002.

[Pustejovsky et al., 2003] J. Pustejovsky, J. Castaño, R. Ingria, R. Sauŕı, R. Gaizauskas,
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