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ABSTRACT
Conversational question-answering (CQA) systems aim to create
interactive search systems that effectively retrieve information by
interacting with users. To replicate human-to-human conversa-
tions, existing work uses human annotators to play the roles of the
questioner (student) and the answerer (teacher). Despite its effec-
tiveness, challenges exist as human annotation is time-consuming,
inconsistent, and not scalable. To address this issue and investigate
the applicability of large language models (LLMs) in CQA simula-
tion, we propose a simulation framework that employs zero-shot
learner LLMs for simulating teacher–student interactions. Our
framework involves two LLMs interacting on a specific topic, with
the first LLM acting as a student, generating questions to explore
a given search topic. The second LLM plays the role of a teacher
by answering questions and is equipped with additional informa-
tion, including a text on the given topic. We implement both the
student and teacher by zero-shot prompting the GPT-4 model. To
assess the effectiveness of LLMs in simulating CQA interactions and
understand the disparities between LLM- and human-generated
conversations, we evaluate the simulated data from various perspec-
tives. We begin by evaluating the teacher’s performance through
both automatic and human assessment. Next, we evaluate the per-
formance of the student, analyzing and comparing the disparities
between questions generated by the LLM and those generated by
humans. Furthermore, we conduct extensive analyses to thoroughly
examine the LLM performance by benchmarking state-of-the-art
reading comprehension models on both datasets. Our results reveal
that the teacher LLM generates lengthier answers that tend to be
more accurate and complete. The student LLM generates more
diverse questions, covering more aspects of a given topic.
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1 INTRODUCTION
Over the years, the information retrieval (IR) community has strived
to create an interactive and iterative search system that effec-
tively retrieves information [4, 9, 13, 21]. Recent advancements
in conversational question-answering (CQA) systems have been
successful in achieving this goal by retrieving relevant information
and engaging in back-and-forth interactions with users to fully un-
derstand their information needs [34, 38]. Under this case, existing
work captures the iterative dynamics of conversations, where a
set of annotators play the role of the questioner (student) and the
answerer (teacher) over a pre-defined search topic [11, 24, 49].

Despite the effectiveness of previous efforts in this task, several
drawbacks exist. One major challenge is the maintenance of a large
team of annotators to generate a substantial number of conversa-
tions. This process can be time-consuming, resource-intensive, and
expensive. Additionally, relying solely on human annotators may
introduce variations in the quality and consistency of the generated
conversations. Also, in many cases, the human student cannot
effectively explore a given topic that is out of their background
knowledge. For example, a person who has expertise in geography
can better explore a related topic rather than a person who does
not. In contrast, large language models (LLMs) can leverage their
vast background knowledge to effectively play the role of a geog-
raphy expert in a conversation. Therefore, it is crucial to explore
automated approaches that can generate simulated conversations,
reducing the dependency on human annotators and making the
process more efficient and scalable.

User simulation is an important emerging research frontier for
conversational search development and evaluation [7, 28], where
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the focus mainly is on simulating the user behavior under a cer-
tain condition, such as responding to system’s actions [47], an-
swering clarifying questions [42], and giving feedback on system
answer [28]. The main drawback of existing research on user simu-
lation is its reactive nature, where the simulated user just passively
respond to the system’s utterance. In real-world scenarios, however,
users’ actions are a mix of proactive and reactive actions, initiating
and frequently guiding conversations by posing questions that stem
from their underlying information need.

In this work, we aim to explore LLMs’ effectiveness in simulating
a proactive user, exploring a pre-defined topic in a conversational
setting. To this aim, we replicate the teacher–student conversa-
tional simulation adopted byChoi et al. [11]while replacing both hu-
man parties with LLMs, enabling us to effectively evaluate and com-
pare the performance of LLMs with human annotators. This leads
us to our first research question, RQ1: how can we employ LLMs to
generate such simulated conversations effectively and automatically?
We answer this question by proposing a zero-shot LLM-to-LLM sim-
ulation framework where the student LLM aims to explore a topic
by posing various questions and the teacher LLM’s goal is to pro-
vide complete and correct answers to the questions. We implement
both the student and teacher by zero-shot prompting GPT-4 [27].

The usage of LLMs in this setting leads us to the next research
questions RQ2: how can we evaluate the role of LLMs in CQA simu-
lation? and RQ3: how do LLM- and human-generated conversations
compare? To address these questions:

(i) We first conduct an extensive independent evaluation of the
teacher, measuring its effectiveness in this task. To this aim,
we conduct an extensive human evaluation task where the
annotators compare LLM- and human-generated answers on
the same questions side by side.

(ii) We then evaluate the performance of the student. To this
aim, we compare the patterns and question-asking behavior
of the LLM and human from various perspectives, discovering
interesting patterns. For example, we find that LLM-generated
questions lead to more topical coverage.

(iii) Finally, we conduct extensive analyses to thoroughly examine
the performance of the LLM by benchmarking state-of-the-art
reading comprehension models on both datasets.

We find that LLM-generated answers are generally lengthier and
more comprehensive. Also, they are more consistent and fluent.
Moreover, our human evaluation reveals that the LLM teacher
is more accurate in providing correct answers. Upon benchmark-
ing state-of-the-art reading comprehension models, we find that
pre-trained models exhibit more effective performance on LLM-
generated data. This efficacy may result from certain biases in the
generated conversations and the enhanced consistency within it.

Overall, our contributions can be summarized as follows:
• We leverage LLMs to mimic human-to-human interaction in a
CQA setting using zero-shot prompting. We prompt two LLMs
to conduct teacher–student simulation and propose an LLM-
generated dataset, called SimQuAC (Code and data available at:
https://github.com/ZahraAbbasiantaeb/SimQUAC.git).
• We propose and perform a comprehensive automatic and human
evaluation framework, as well as linguistic analysis to evalu-
ate the LLM’s effectiveness in this setting on the teacher and
student level.

Answer Generation  

Prompt Selection
Teacher  

Answer Validation  

Question Generation  

Prompt Selection
Student  

Question Validation  

Wikipedia Page
(1)
(2)
(3)
(4)

Figure 1: A high-level view of the architecture of our Simula-
tion framework.

• We conduct extensive analyses on LLM- and human-generated
conversations, discovering many interesting patterns exhibited
by humans and LLMs during CQA.

2 METHODOLOGY
2.1 Problem Setting
Our experimental setup involves simulating an information-seeking
conversation, where a student interacts with a teacher in a question-
answering conversation. Based on that, we adopt the setting es-
tablished by the QuAc! (QuAc!) dataset [11], which serves as a
widely recognized benchmark for evaluating the effectiveness of
CQA models. The dataset revolves around discussions based on
Wikipedia articles. It consists of conversation contexts where a
crowdworker plays the role of a questioner (student) and engages
in a conversation with another crowdworker who acts as an an-
swerer (teacher). Specifically, the teacher is given access to the
entire Wikipedia section article and aims to generate responses to
questions posed by the student. To ensure fairness, the teacher’s
responses are limited to selecting the appropriate answer span from
the article. In contrast, the student is only provided with the arti-
cle’s title and tries to use this limited information to ask relevant
questions and explore the topic. As the students engage in the
conversation, they explore the topic by asking questions, and the
conversation unfolds accordingly.

2.2 Task Formulation
As is mentioned in Section 2.1, the conversation evolves around a
Wikipedia article titled 𝑡 . The student is only provided with limited
access to information, including the section headerℎ as information
need and the first paragraph of the main article 𝑏, which serves
as the background information. The teacher, on the other hand,
has access to the additional information, including the full text of
the section 𝑠 . The conversation begins when the student raises an
initial question 𝑞0 and the teacher provides an answer, denoted as
𝑎0. After receiving the answer from teacher, student continues to
askmore questions until some stoppage criteria aremet. Specifically,

9

https://github.com/ZahraAbbasiantaeb/SimQUAC.git


following previous work [11, 37, 49], instead of answering with free-
text, the teachermust select one or several contiguous spans from
text as the answer. Note that although limiting the LLM to select
text spans restricts the teacher’s ability to freely provide answers,
it offers the advantage of simplified answer evaluation and prevents
hallucination. This setting enables us to examine the proficiency
of LLMs in tasks like CQA and reading comprehension (RC) by
comparing their performance against existing methods.

2.3 Model Framework Overview
In order to have a better understanding of RQ1, we propose a LLM-
based framework. Figure 1 illustrates the overall architecture of our
model, showcasing the interactions between the two LLMs. The
entire process evolves around a Wikipedia page. The purple box
on the right plots the simulated student, named studentSim, while
the orange box on the left plots the simulated teacher, named
teacherSim. The teacherSim and studentSim contain several compo-
nents to generate acceptable answers and questions, respectively.

The process of generating the conversation starts with initializ-
ing studentSim by giving the instruction prompt InstructionS. The
InstructionS prompt aims to guide the student LLM studentSim in
generating the first question 𝑞0 in the question generation compo-
nent (𝜙𝑆 ). Then, we pass the generated question 𝑞0 to the question
validation component (𝜎𝑆 ). This component plays a critical role
in ensuring the structural integrity of the generated questions. If
it determines that the structure of the question is not acceptable,
studentSim will prompt 𝜙𝑆 again to regenerate 𝑞0. After that, we
forward 𝑞0 to teacherSim, which concatenates it with the instruc-
tion prompt InstructionT, forming a combined input. This combined
input is then fed to the answer generation component (𝜙𝑇 ) for gen-
erating the answer 𝑎0. To ensure that the generated answers adhere
to our defined setting (i.e., corresponding to one or multiple seg-
ments in the section text 𝑠), an answer validation (𝜎𝑇 ) component
is leveraged to check the validity of 𝑎0. If 𝑎0 is determined as an
invalid answer, a prompt selection teacher component 𝜔𝑇 will select
the appropriate prompt (𝑝𝑇 ) and pass it to 𝜙𝑇 to regenerate the
answer 𝑎0. This step continues when 𝑎0 is determined to be valid
by 𝜎𝑇 , it is passed back to studentSim.

Similarly, studentSim incorporates the prompt selection for student
component (𝜔𝑆 ) to select the optimal prompt 𝑝𝑆 for generating
the subsequent question 𝑞𝑖 . Once chosen, it transfers 𝑝𝑆 to the
question generation 𝜙𝑆 module again, where 𝑝𝑆 is then employed
to generate the next question 𝑞𝑖 . This back-and-forth question–
answering process continues until the stoppage criteria are met. In
each turn, the generated question 𝑞𝑖 and answer 𝑎𝑖 will be stored.
Algorithm 1 shows the detailed simulation process of our model.
In the following sections, we will provide detailed explanations of
each component to further elucidate its functionality.

2.4 Teacher Simulation

Answer generation (𝜙𝑇 ). This component belongs to teacherSim
and is initialized with InstructionT in a zero-shot manner. The
InstructionT includes the instruction to copy the exact spans from
𝑠 to answer the given question and some information about the
Wikipedia page including the title 𝑡 , background 𝑏, and section text
𝑠 . We instruct teacherSim to generate the sentence “I cannot find

Algorithm 1: Data simulation algorithm
Data: 𝑡 , 𝑏, 𝑠 , ℎ, 𝑁 , 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒
Result: 𝑞0...𝑁 , 𝑎0...𝑁

1 InstructionS← StudentInitialPrompt(𝑡 , 𝑏, ℎ);
2 InstructionT← TeacherInitialPrompt(𝑡 , 𝑏, ℎ, 𝑠 , 𝑞0);
3 𝑖 ← 0 ;
4 while 𝑖 < 𝑁 do
5 𝑚 ← patience ;
6 if 𝑖 == 0 then
7 𝑞𝑖 ← 𝜙𝑆 (InstructionS) ; /* studentSim */

8 else
9 𝑝𝑆 ← 𝜔𝑆 (𝑎𝑖 );

10 𝑞𝑖 ← 𝜙𝑆 (𝑝𝑆 );
11 end
12 while 𝜎𝑆 (𝑞𝑖 ) is False do
13 𝑝𝑆 ← updatePromptToAskShortQuestion(𝑝𝑆 );
14 𝑞𝑖 ← 𝜙𝑆 (𝑝𝑆 );
15 end
16 if 𝑖 == 0 then
17 𝑎𝑖 ← 𝜙𝑇 (InstructionT) ; /* teacherSim */

18 else
19 𝑎𝑖 ← 𝜙𝑇 (𝑞𝑖 )
20 end
21 while 𝜎𝑇 (𝑎𝑖 , 𝑏, 𝑠) is False and𝑚 > 0 do
22 𝑝𝑇 ← 𝜔𝑇 (𝑎𝑖 , 𝑏, 𝑠);
23 𝑎𝑖 ← 𝜙𝑇 (𝑝𝑇 );
24 decrement m;
25 end
26 increment 𝑖;
27 end

the answer.” when 𝑠 does not contain the answer. Additionally, to
prevent the generation of excessively long answers that could po-
tentially impede readability, we implement a two-step mechanism
to control the length of the generated answers: (i) we specify in
the prompt that the selected span should not exceed a maximum
of 40 tokens; (ii) we include the statement “Remember that you
should select the shortest possible span from the text,” at the end of
each question, making teacherSim itself decide on the length of the
sentence within the maximum limit.

Answer validation & regeneration (𝜎𝑇 ). Rather than solely rely
on the instruction prompt InstructionT for one-time answer gen-
eration, we adopt an iterative model 𝜎𝑇 to validate and refine the
generated answers in succession to ensure they are in line with
the request of InstructionT. This component serves as a reminder to
𝜙𝑇 of the validation criteria and prompts teacher to generate an
answer that aligns with the given section.

We define that a valid answer (𝑎𝑖 ) should include exact copies of
contiguous spans in the section text 𝑠 , or it should be the phrase
“I cannot find the answer,” if the question (𝑞𝑖 ) cannot be answered
from the text. Therefore, we verify an answer’s validity based on
two criteria: (i) whether 𝑎𝑖 contains one or multiple exact copies of the
text spans in 𝑠 or being “I cannot find the answer” ; and (ii) whether
𝑎𝑖 is copied from the text section 𝑠 , rather than the background 𝑏.
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Table 1: The template for constructing InstructionT (left side) and the InstructionS (right side). The variables inside “[ ]” would
be filled based on the input Wikipedia page.

InstructionT InstructionS

Topic: [𝑡]
Background knowledge [𝑏]

In this task, you will be given a text about the
topic explained above. You will answer my questions
from this text. Please remember that you cannot
generate the answer on your own but should only
copy a continuous span from the original text and
the copied answer should not exceed 40 tokens.
If you cannot find the answer in the text, please
generate ‘I cannot find the answer’.

Section header: [ℎ]
Section text: [𝑠]

In this task, I am a teacher and have a document, you are a curious student
who wants to explore this document by asking questions. The main objective
is to learn most of the documents that I have. I will explain to you the topic
and background knowledge of the document. Then I will give you the title of
the document and you should ask questions about this title one by one. When
you ask a question, I give you the answer, and then you ask your next question.
I’m only allowed to find the answer to your questions from this document,
so if I cannot find the answer, I will say “I cannot find the answer, please ask
your next question”. You shouldn’t ask questions that can be answered from
my previous answers to your previous questions. You should sometimes ask
follow-up questions from my previous answers.

Topic: [𝑡]
Background knowledge [𝑏]
Please start asking question about: [ℎ]

We follow the steps below to address the two validation criteria.
First of all, to address criterion (i), we conduct a simple text search
and see if 𝑎𝑖 (or each sentence of 𝑎𝑖 ) is from 𝑠 . Notably, we notice
that most of the time LLMs do not copy the texts inside the brackets
and neglect the extra white spaces within the text. Therefore, we
generate two normalized versions of 𝑠 by (i) removing the extra
white spaces and (ii) texts inside the brackets. If 𝑎𝑖 is not found in 𝑠
and its normalized versions, we issue a second prompt (𝑝𝑇 ) ‘Please
copy the answer exactly from the given text,” reminding 𝜙𝑇 where it
has failed. To address criterion (ii), we also perform a text search to
see if 𝑎𝑖 is selected from 𝑏. In such a case, we issue a second prompt
(𝑝𝑇 ) “Please answer from the given section not the given background
description,” to remind 𝜙𝑇 of this criterion. We continue these steps
until the generated answer satisfies both validation criteria.

Finally, once the valid 𝑎𝑖 has been confirmed by 𝜎𝑇 , it is passed
on to studentSim, which utilizes 𝑎𝑖 to formulate the next question
(𝑞𝑖+1) in the conversation. However, there are cases where the loop
continues for an excessive number of iterations. We terminate the
loop in such cases, assuming that teacherSim fails in finding the
answer from 𝑠 , or the question is not answerable. Similar to QuAC,
we set the answer to such questions to “I cannot find the answer.”
This is necessary to prevent an infinite loop and ensure that the
system remains efficient and responsive.

2.5 Student Simulation

Question generation (𝜙𝑆 ). To simulate the student, we prompt
the Question Generation 𝜙𝑆 component of studentSim in a zero-
shot manner. With InstructionS, we instruct studentSim to explore
the given information (ℎ and 𝑏) by posing questions, under the
assumption that it does not possess knowledge of 𝑠 . As shown in
Table 1, we include the topic 𝑡 and 𝑏 as well as the section header ℎ
in InstructionS to ensure that studentSim has some basic knowledge
about the given topic.

Question validation (𝜎𝑆 ). To ensure that an LLM-generated ques-
tion 𝑞𝑖 is structurally sound, we employ a validation step called 𝜎𝑆 .
This component serves the purpose of verifying and validating the

syntactical correctness and coherence of the generated question.
We observe that while 𝑞𝑖 is supposed to be exactly one question in
our setting, sometimes the LLM tends to generate multiple ques-
tions in one go. To address this issue, we consider a question valid
if it adheres to the following criteria: (i) it should not exceed 25
words in length and (ii) should not contain a newline character
or enumerated items (e.g., 1, 2, 3). This simple yet effective valida-
tion helps to filter lengthy and intricate questions, including those
containing multiple sub-questions.

Prompt selection for student (𝜔𝑆 ). As the conversation pro-
gresses, there may be instances where the generated question 𝑞𝑖
remains unanswered from the given text (𝑠) despite being relevant to
the information need (ℎ) and topic (𝑡 ). For instance, students tend
to ask very specific follow-up questions that cannot be answered
from 𝑠 (e.g., “Was Newsom’s mayoralty generally well-received by
the citizens of San Francisco?”). To address this issue, it is crucial
to continuously assess the ability of the teacher simulator to an-
swer the generated question 𝑞𝑖 and make necessary adjustments
to the student prompt 𝑝𝑆 to enhance the quality of the question.
The refined 𝑝𝑆 aids the generative component 𝜙𝑆 in generating
questions that can be answered from the given information 𝑠 . For
instance, if the response 𝑎𝑖 is “I cannot find the answer,” there is a
higher chance that the subsequent question 𝑞𝑖+1 might be overly
specific and cannot be answered directly from 𝑠 . To solve this is-
sue, 𝜔𝑆 randomly selects one of the following guiding prompts as
𝑝𝑆 and passes it to 𝜙𝑆 . These guiding prompts include: (i) Ask a
general question and do not ask a too specific question; (ii) Ask a
question starting with where, when, or who; (iii) Ask a question
about what is interesting in this article; (iv) Ask a question about
another aspect of the topic. By utilizing these guiding prompts, we
can effectively prevent the generation of overly specific questions
and guide studentSim by offering additional clues and information.
This approach allows for more efficient exploration of the given
information need (ℎ) by the studentSim, ultimately enhancing its
overall understanding.
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Table 2: Examples of cases where answers generated by
teacherSim win the original QuAC answers in each aspect.

Correctness

1) How old was he when he went on pilgrimage?
answerQuAC: In 1897,
answerSim: He was twenty-eight, had been married ten years, and had
an infant son with another child on the way.

Completeness

2) What shows did David Frost have?
answerQuAC: Sunday morning interview programme Breakfast
answerSim: Sunday morning interview programme Breakfast; Through
the Keyhole; Al Jazeera English.

Naturalness

3) Did he perform in the later 30s?
answerQuAC: Agency. Mills though continued to record Ellington
answerSim: In 1937, Ellington returned to the Cotton Club which had
relocated to the mid-town Theater District.

3 TEACHER EVALUATION
In this section, we describe our experimental methodology to evalu-
ate the performance of teacherSim from various perspectives, which
addresses RQ2 and RQ3 from the teacher perspective. Firstly, we
describe the data source to perform teacher evaluation. We then
introduce the human evaluation process of the teacher, with a
particular focus on assessing the generated answers by comparing
them against human-generated answers.

3.1 Experimental Setup

Data for evaluating teacherSim. To simulate the teacher and
ensure a fair comparison between the LLM- and human-generated
answers, we maintain consistency in the conversation topic and
questions across the comparison. In detail, we randomly select
50 conversations from the training set of QuAC [11]. From each
conversation in the sampled data, we borrow the topic information
and all associated questions. Following this, we pass the questions
to our teacherSim to generate the answers and then compare them
with the original answers from QuAC.

Parameters. In our experiment, we adopt GPT-4 as our base teacher
and student LLM. In our preliminary experiments, we explored
using other LLMs such as GPT-3.5 and LLaMA [48] as teacher.
However, we found that only GPT-4 can copy an exact segment of
the text in a zero-shot manner (we later discuss it as a direction for
future work in Section 6). Other models failed in this task by either
generating broken or free-text sentences that did not satisfy our
requirements. In our model, we set the patience parameter of 𝜎𝑇 to
a fixed value of 4, which means the teacher validation loop breaks
after a maximum number of 4 iterations.

Human evaluation. To evaluate the performance of the teacher
in our task, we conduct human evaluation on a professional crowd-
sourcing platform Prolific.1 We ask the crowd-workers to compare

1https://prolific.co

the answers generated by teacherSim (i.e., answerSim) with the an-
swers of QuAC (i.e., answerQuAC) in terms of correctness, complete-
ness, and naturalness. We explain each aspect in detail:
• Correctness aims to determine whether the selected text span
accurately serves as a correct answer to the question, based on
the context of the conversation.
• Naturalness measures the fluency and human-likeliness of a text
span. Although both QuAC and teacherSim contain a selected text
span as a response, we observe that in many cases of QuAC, the
selected spans are unnatural and do not form complete sentences.
• Completeness measures whether the provided answer is complete
and comprehensive. It is important to note that an answer can
be correct but incomplete. For example, if the question is about
the albums of an artist, a more complete answer is the one that
lists more albums, if not all.
Additionally, we ask the crowd-workers to indicate which system

(human in QuAC vs. teacherSim) they would prefer to interact with
by providing a short justifying, aiming to capture the overall quality
of the generated data in a conversation.

Crowdsourcing task design. We design a crowdsourcing task
accordingly for the assessment between two conversations. The
annotators begin by comparing the responses from both systems
for each question. We display the background information (𝑏) and
the section text (𝑠) on the left side of the page. On the right side, we
include each question along with the simulated answer (answerSim)
and the original QuAC answer (answerQuAC). For each annotation
aspect, we ask the annotators to indicate which system is better by
choosing from the four options, namely, “System A,” “System B,”
“Neither A nor B,” and “Both A and B.” The annotators can easily
locate the selected text spans by clicking on the answers. The text
will be highlighted in 𝑠 , enabling them to compare the two spans
efficiently and easily. Note that we do not ask the annotators to
evaluate the questions when the answers from answerQuAC and
answerSim are identical. However, we still include them in the inter-
face as they can contribute to the context of the conversation. Also,
when one of the answers is “I cannot find the answer,” we only ask
the annotators to evaluate its correctness, as other metrics cannot
be evaluated for these cases.

Annotation and quality check.We randomly sampled 50 conver-
sations from two datasets and divided them into 10 batches, each
containing five conversations for evaluation. To ensure reliable
assessments, we have a minimum of three crowd-workers evaluate
each conversation independently. We consider one system to have
won over the other when the majority of the crowd-workers choose
it. However, we acknowledge that there may be instances where
the two systems perform equally well. In such cases, no system
receives the majority vote, leading to a tie. In Table 2, we provide
several cases when the LLM answer answerSim wins the human
answer answerQuAC under different aspects.

To avoid any position bias in the annotations, both QuAC and
teacherSim examples are randomly switched and positioned as Sys-
tem A and System B for each conversation. Also, to ensure English
proficiency, we made the task visible only to native English speak-
ers. Additionally, before starting the annotation task, we asked the
crowd-workers to complete an onboarding test, consisting of some
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Table 3: Statistics of comparison on answerQuAC and
answerSim under different conditions based on their answer
span and type. The “I cannot find the answer” answers are
represented by ‘None.’ We refer to the single-span answers
generated by answerSim by ‘single’.

Ans. Span Condition Count Total

Overlap answerSim is single 87 106 (29.5%)
answerSim is not single 19

Different

answerQuAC = None
AND answerSim!= None 18

176 (49.0%)answerSim = None
AND answerQuAC!= None 54

answerSim is single 85
answerSim is not single 19

Same

answerSim = None
AND answerQuAC = None 41

77 (21.4%)
answerSim is single 33
answerSim is not single 3

questions about the task itself (e.g., (i) What does “System A is
correct” mean? and (ii) Is a correct answer always natural?). We
also provided around 10 sample annotations for the crowd-workers
to refer to. Upon completion, we evaluated their responses, and
only if they answered at least 75% of the onboarding questions
correctly, they were allowed to start the main annotation task. This
approach helps to guarantee that crowd-workers are adequately
prepared and knowledgeable before undertaking the annotation
tasks. Moreover, we manually check the consistency of preference
justifications with the labels by reading their open comments. We
noticed that in some cases (7%) they do not match, so we removed
them from our dataset.

3.2 Experimental Results
In this section, we evaluate the performance of teacherSim.

Answer comparison: QuAC vs. teacherSim.We report the per-
formance on 359 questions extracted from the 50 sampled con-
versations. For 77 questions answerSim is identical to answerQuAC.
Furthermore, for 106 of the questions, there is an overlap between
answerSim and answerQuAC, indicating that one is a substring of
the other. For 176 questions, answerQuAC and the answerSim do not
overlap. Notably, for 41 questions, teacherSim returns more than one
segment from the text as the answer. The statistics on comparison
of answerQuAC and answerSim can be found in Table 3.

Answer-level human evaluation.We report the result of teacherSim
human evaluation (Fleiss’ 𝜅 = 0.4365) in Table 4. The result shows
that teacherSim outperforms the human teacher of QuAC in terms
of all question-based metrics by a large margin. Additionally, we see
that the annotators prefer the answers provided by our teacherSim
over the answerQuAC in 87.7% of the topics. teacherSim answers
exhibit enhanced accuracy and naturalness due to a significant
number of incomplete answer spans in QuAC. This leads to gram-
matically incorrect sentences (e.g., “platinum. Thank U, the’,’ “Tori
Amos on the 5 and a Half Weeks”). It is also noteworthy that we
allow teacherSim to select multiple spans from the text to provide

Table 4: Results of the pairwise human evaluation of answers
generated Teacher simulation answerSim compared to origi-
nal answerQuAC answers. Each cell reports the percentage of
cases where the three human annotators agreed that either
answerQuAC or answerSim wins. We also report the percent-
age of ties, where the annotators disagreed on a winner.
Annot. level Metric answerQuAC answerSim Tie

Question
Correctness 11.31% 38.6% 50.0%
Naturalness 7.1% 42.1% 50.7%
Completeness 5.26% 53.8% 40.8%

Conversation Preference 6.12% 87.7% 6.18%

more complete answers to the questions, when necessary — some-
thing that is missing in QuAC training set, but only available in
the test set [11]. Furthermore, as in our task, we limit the LLM
to answer questions from the given text, the risk of hallucination
is highly decreased and is indeed verifiable, making LLMs more
reliable. These findings are in line with Faggioli et al. [15], showing
the potential of LLMs in replacing crowdsourcing in annotation and
simulation tasks, addressing the concerned research question RQ3.

Conversation-level human evaluation. We further compute
Preference as reported by the annotators, who indicate their pref-
erence for interacting with either of the two systems. We see in
Table 4 that answerSim is the winner in terms of conversation-level
annotator preference, where 87.7% of them prefer answerSim over
answerQuAC. This indicates the promising potential of LLMs in en-
gaging in a conversation, as long as they are sufficiently informed
about the task and certain verification steps are employed.

We follow Siro et al. [43] and cluster the open-ended justifica-
tions provided by the annotators into different categories to gain
more insights into other aspects of quality that can be overlooked
in our human evaluation. In our analysis, we find that most of
the comments mention the three aspects that we include in our
annotation task (i.e., correctness, naturalness, and completeness).
We also find comments that can be classified into seven new cate-
gories, namely, clarity, coherency, directness, being comfortable, trust-
worthiness, factuality, and conciseness. We see that many annotators
found answerSim answers more factual and found the conversations
more comfortable. Interestingly, even though answerSim answers
are lengthier on average, some annotator justified their preference
because of their conciseness.

4 SIMULATION EVALUATION
To provide a more comprehensive evaluation of RQ2 and RQ3, we
assess the performance of the LLM simulation in comparison to
human performance. We first introduce an LLM-based simulated
dataset SimQuAC. Furthermore, we report the results of state-of-
the-art reading comprehension methods on the two datasets to shed
light on the quality and difficulty of the simulated dataset.

4.1 SimQuAC Dataset
We first introduce our dataset named SimQuAC for simulation
evaluation, using the simulation framework described in Section 2.
To collect SimQuAC we used GPT-4 to implement studentSim and
teacherSim. We randomly select 342 conversations from the train-
ing set of QuAC and simulate 334 conversations using the unique
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Table 5: Statistics of the collected dataset by simulating the
conversation with teacherSim and the studentSim.

QuAC SimQuAC

# conversations 342 334
# questions 2,498 4,005
# questions with answer 2,062 2,517
Avg. length of the answers 15.33 28.23
Avg. # answers per question 1 1.32

Table 6: The questions from QuAC on “Talland House (1882-
1894)” section of the “Virginia Woolf” topic with the ques-
tions generated by studentSim.

SimQuAC

𝑞1) Where is Talland House located?
𝑞2) Did Virginia Woolf live in Talland House during the period of 1882-1894?
𝑞3) Who owned Talland House during this period of 1882-1894?
𝑞4) What is the architectural style of Talland House?
𝑞5) Did any notable events take place in Talland House during the period between
1882-1894?
𝑞6) What impact did living in Talland House have on Woolf’s later work?

QuAC

𝑞1) What is Talland house?
𝑞2) What happened at this house?
𝑞3) Did anything tragic happen?
𝑞4) What else happened at the house?

topics from this sample. SimQuAC consists of 4,005 questions with
an average of 1.32 answer spans per question. The statistics of
SimQuAC are presented in Table 5, alongside those of the original
QuAC conversations.

4.2 Student Evaluation
Due to the nature of the student’s role in a conversation, which
involves asking questions and exploring a topic, it becomes chal-
lenging to define an objective metric that determines which model
is “better.” Therefore, our emphasis lies in highlighting the distinc-
tions between the behavior of two systems by contrasting their
linguistic characteristics from various aspects.

Question comparison: QuAC vs. studentSim. Table 6 presents
a sequential collection of questions in a conversation within both
the QuAC and SimQuAC datasets, sharing the same topic. An ob-
servation can be made that GPT-4 tends to inquire about more
detailed and lengthy questions compared to humans. Additionally,
it is worth noting that the human student in QuAC ceases ask-
ing questions after the fourth one, while the simulated student in
SimQuAC continues to pose additional queries.

Coverage. We assess the ability of the two students to explore a
topic by comparing how much of the 𝑠 is covered by the answers
provided to the questions posed. We plot the distribution of cov-
erage in Figure 2a. We observe that SimQuAC questions cover a
significantly (two-tailed t-test; 𝑝-value < 0.001) larger portion of the
text (mean = 0.365; std = 0.163), compared to QuAC (mean = 0.238;
std = 0.122), suggesting that careful prompting of LLMs can lead to
a diverse and comprehensive set of questions in a conversation.

Conversation flow. Next, we compare the questions posed in
terms of how they shape the flow of the conversation. Our objective
in this experiment is to evaluate the naturalness of the conversation
flow and the smoothness of topic transitions. We hypothesize that
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Figure 2: Comparison between student of QuAC and
SimQuAC in terms of (a) topic coverage and (b) conversa-
tion flow.

a conversation that strictly follows the sequential order of the
content in 𝑠 is less natural. To measure this, we assign an order
to the questions based on the positions of their corresponding
answers in 𝑠 . For instance, let us consider questions A, B, and C. To
determine their order, we examine the text spans of their respective
answers and sort them based on the start position of each answer.
In this case, say question B’s answer is at the earliest position of
𝑠 , followed by A and C. Therefore, the question order would be
{B, A, C}. To assess the sequential nature of the conversation flow,
we compare the order of the questions in the conversation to their
order in the document, considering their corresponding answers.
In our example, if questions {A, B, C} appear in the conversation in
the same order, i.e., A is followed by B and then C, the conversation
flow would be considered completely linear.

To evaluate the degree of correlation between the question or-
der in the conversation and the corresponding answer order, we
calculate the Kendall rank correlation coefficient (KRCC) metric [1]
for each conversation. KRCC measures the distance between two
ranked lists, where a lower value indicates more distance between
the two lists. In our case, the lower the value, the less sequen-
tial a conversation flow is. Figure 2b plots the distribution of the
two datasets in terms of KRCC. We can see that the average value
of KRCC is lower for SimQuAC than QuAC, indicating that the
student of QuAC poses more questions in a sequential order, com-
paredwith studentSim. This suggests that studentSim tends to explore
the topic by jumping from one part to another part. While there
is no indication as to which order is more natural, we can see that
there is a clear difference in their behavior. It is noteworthy that
exhibiting a more random behavior in posing questions can lead
to more challenging datasets, as it prevents model learning such a
biased behavior of student.

4.3 Reading Comprehension Benchmarking
To gain a deeper understanding of the distinctions between the
human-generated (QuAC) and the LLM-simulated data (SimQuAC),
we utilize several pre-trained discriminative and generative reading
comprehension baselines for evaluating the teacher model. These
models are pre-trained on the SQuAD dataset [37] and we test them
on two datasets directly without further fine-tuning. To ensure a
fair comparison with the QuAC subset, we impose a limitation
on SimQuAC, restricting it to a maximum of 3 questions within a
conversation that do not have an answer. Table 7 reports the results
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Table 7: Experimental results of reading comprehensionmod-
els on QuAC and SimQuAC in terms of precision (Pre.), recall
(Rec.), F1-measure (F1), and exact match (EM). ‘-b’ refers to
the ‘-base’ variant of the models, while ‘-l’ refers to their
‘-large’ variants. All the numbers are shown in percentages.

QuAC SimQuAC
Pre. Rec. F1 EM Pre. Rec. F1 EM

DistilBERT [40] 10.99 7.36 6.70 1.88 15.28 7.59 7.75 1.36
BERT-b [14] 12.87 10.64 8.31 2.38 17.76 10.25 9.16 1.21
BERT-l [14] 24.93 18.16 16.33 4.17 29.74 16.84 16.75 2.26

T5-b [36] 26.69 21.58 18.93 6.28 31.63 18.02 18.13 2.52
T5-l [36] 29.70 23.45 21.267.27 35.63 20.90 21.24 3.01

of different models in terms of exact match (EM), precision, recall,
and F1-measure when testing on the two datasets.

The results demonstrate that, in comparison to QuAC, most mod-
els exhibit superior overall performance when tested on SimQuAC.
This suggests that the LLM-simulated data may provide a more
favorable context for these models, leading to improved results.
Furthermore, it is noteworthy that the EM score in SimQuAC is
lower compared with QuAC. This discrepancy can be attributed
to the fact that, in SimQuAC, the answers generated by LLM tend
to cover a longer span compared to the answers in QuAC, posing
more challenges for matching. Moreover, there are more questions
with no answer in SimQuAC. The pre-trained models always out-
put a span as an answer, instead of predicting no answer, leading
to a lower EM measure. Additionally, our observations reveal the
superior performance of generative methods, such as T5, compared
to discriminative methods, such as BERT. This finding emphasizes
the importance of utilizing generative LLMs for this particular task.

5 RELATEDWORK
5.1 Conversational Question Answering
CQA requires the ability to correctly interpret a question in the
context of previous conversation turns [53]. Under this context,
modern CQA systems can be divided into two types: sequential
knowledge-based question-answering (KB-QA) agents [12, 20, 39]
and conversational machine reading comprehension (CMRC) sys-
tems [19, 25, 35, 38, 52]. In sequential KB-QA systems, agents need
to search the database for the appropriate information to generate
the answer. In this paper, we focus on the CMRC setting, where the
conversation revolves around a given article and the answers are
typically a span in the given resource. To this end, several datasets
such as CoQA [38], FlowQA [19], have been proposed. Among all
the CMRC datasets, QuAC contains over 14K crowdsourced QA
dialogues [11]. This dataset allows for a student posing a sequence
of free-form questions to learn as much as possible about a hidden
Wikipedia article and a teacher is hired to find the answer to each
question in the text. Following this line, extensive tasks such as
reading comprehension [19, 32, 35, 55], answer ranking [34], ques-
tion generation [22, 51] are adopted to measure the performance
on both student and teacher levels.

5.2 User Simulation
While user simulators have been studied in the information re-
trieval (IR) community extensively [8, 10, 26], including applica-
tions such as simulating user satisfaction for the evaluation of task-
oriented dialogue systems [44] and recommender systems [2, 54],
they are often limited to reacting to a system’s action. The emer-
gence of LLMs provides the opportunity to improve user simulation,
making it more realistic. LLMs are ideal for human simulations due
to their remarkable ability to process text in the natural language
format. They are also able to generate coherent and contextually
appropriate language that is very similar to how humans communi-
cate [29, 30, 56]. One such application is using LLMs as evaluators
to mimic human evaluation, which has proven to be highly effective
in various contexts [3, 16, 31, 33, 41, 57]. For instance, Guo et al.
[16] compare ChatGPT with human experts by collecting tens of
thousands of comparison responses from both sources. Tan et al.
[45] assess the performance of ChatGPT as a KB-QA system us-
ing its own knowledge. Another common application of LLMs in
simulation is leveraging them as an annotator-free tool for data aug-
mentation [5, 6, 17, 18, 23, 46, 50]. Sekulic et al. [42] employ GPT-2
and propose an evaluation framework based on mixed-initiative
conversations. Owoicho et al. [28] take it one step further and utilize
GPT-3.5 to simulate a user that can also provide feedback on the rel-
evance of a returned document in a conversational search setting. In
the context of document re-ranking, Askari et al. [5] prompt LLMs
to generate synthetic training data for cross-encoder re-rankers.
Most recently, Hu et al. [17] adopt LLMs as user simulators in a task-
oriented dialogue system. To the best of our knowledge, our work
is the first to utilize LLMs as annotator-free teacher–student sim-
ulators in a CQA system, where the student takes a proactive role
in exploring a topic.

6 CONCLUSIONS AND FUTUREWORK
We explore simulating human-to-human conversations using zero-
shot prompting of LLMs in a CQA setting. Our framework involves
two GPT-4s interacting on a topic: one as the student generating
questions based on background knowledge, and the other as the
teacher seeking answers within a text on the given topic. To as-
sess the system, we initially evaluate the teacher’s performance
through both automated methods and human assessment. Subse-
quently, we compare conversations generated by the LLM and those
by humans for the student-level evaluation. In summary, our inves-
tigation highlights the potential of LLMs in facilitating interactive
and informative retrieval experiences.

Despite the superiority of our model, several limitations persist,
which point to avenues for future research. Firstly, according to our
findings, only GPT-4 consistently follows instructions to generate
reasonable conversations, constraining the overall effectiveness of
the pipeline. Besides, language models can exhibit various biases,
when used for such simulation. It therefore becomes essential to fur-
ther develop methods to mitigate these biases. Moreover, although
we have devised prompting strategies to mimic human interaction,
the manual construction of instructions can be time-consuming.
Future work should explore more advanced and efficient automatic
prompting strategies to enhance the system.
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7 ETHICAL CONSIDERATIONS
Our work revolves around utilizing LLMs to simulate users. Given
the recent emergence of LLMs and the vast interest in using them
for various research directions, we believe that pursuing such a
direction is necessary as it unveils the potential of LLMs, while
at the same time exhibiting their potential ethical considerations.
Below we list some of these concerns that need to be considered
and addressed in this research area:
• Bias and discrimination: LLMs are biased towards their training
data. The simulated data could in turn carry the same biases and
further propagate stereotypes and discrimination.
• Misrepresentation: using an LLM to simulate users would intro-
duce certain biases on the type of users being represented. The
biases that exist in the data that the LLM is trained on would be
reflected in the simulated user.
• Transparency and accountability: the decision-making process
within LLMs can be opaque, making it challenging to understand
how or why a particular simulated conversation is generated.
This lack of transparency can lead to ethical challenges, par-
ticularly in contexts where clear justification for a decision is
required.
• Environmental impact: the training and operation of LLMs con-
sume significant computational resources, contributing to energy
consumption and potentially having a negative environmental
impact.

While simulating users using LLMs has various advantages, it must
be approached with careful consideration of the potential ethical
implications.
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